Photoshop 2.0: Generative Adversarial Networks for Photo Editing

Homero Roman, Michelle Zhang, Brandon Yang **CS231N Spring 2017**

Background

- Generative Adversarial Networks (GANs) generate images from a min-max game between generator and discriminator
- Recent research has focused on improving GAN architectures for training and image quality, such as WGAN
- We focus on building an architecture to directly train autoencoders for GANs to better understand the learnt latent space representation of these networks
- Previous research into conditional GANs conditions GAN training on labeled data for more specific image generation,
- Preliminary results in the DCGAN paper illustrate the potentials of latent space traversal and selective dropout for tuning image generation and semantic understanding

Dataset

- The **celebA** dataset contains over 200,000 face images of various celebrities
- Labeled with 40 different binary attributes for facial features, including hair color, gender, relative age, and whether or not the person is smiling.

Models

- To train a GAN auto-encoder we first trained the DCGAN model for 25 epochs and used the trained generator weights as our encoder
- We experimented with three approaches to encoder networks with the L2 similarity metric
 - Fully connected encoder model baseline Ο
 - Deep convolutional encoder Ο
 - Transfer learning encoder with weights from the Ο trained discriminator from the DCGAN model
- We then experimented with different loss functions to produce more realistic encodings: L1, L2, and SSIM

References

- 1. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. 2014.
- 2. G. Heinrich. Photo editing with generative adversarial networks, Apr. 2017.
- 3. T. Kim. Neural face. https://github.com/carpedm20/DCGAN-tensorflow, 2016.
- 4. A. B. L. Larsen, S. K. Sønderby, and O. Winther. Autoencoding beyond pixels using a learned similarity metric. CoRR, abs/1512.09300, 2015.
- 5. Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV), Dec. 2015.
- 6. A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
- 7. T. White. Smile vector.

F	
F	
F	
F	
li	
FC E	

Figure 1: GAN Autoencoder and Generator network overview.

Figure 2: Encoder network architectures.

Qualitative Results

Training the extended transfer learning encoder :

Using GAN autoencoder to create smiling image

Evaluation

	L2 Loss	L1 Loss	SSIM Loss
FC Encoder	668.223	-	-
DeepConv Encoder	525.860	-	-
Transfer Learning Encoder	641.906	1990.323	0.293
Extended Transfer Learning Encoder	701.273	-	-

Figure 4: Loss results.

Conclusions and Future Work

- GAN autoencoders can be effe learning from the discriminator
- Manipulating encoded images with simple vector operations t
- Our model seems limited by inh generator and dataset (female be addressed with different ger
- In the future, we want to explor metrics for generated image qu end architectures for image pro
- Explore different operations in selective dropout and effects o

Stanford ENGINEERING **Computer Science**

ctively created by transfer
r network
in the latent vector space
to generate images
nerent biases in the
faces), which can perhaps
nerator approaches
re better quantitative
ality and possible end to
ocessing
the latent space and
n generated images