Evaluation of Image Completion Algorithms: Deep Convolutional Generative adversarial Nets vs. Exemplar-Based Inpainting Koki Yoshida, Chanduo Huang

Department of Computer Science, Stanford University

Motivation

- different inpainting algorithms are rarely highlighted
- based inpainting

	Src Images	Quality	Runtime	Α
EBI	Works on unseen images	Depends on content and mask	Faster. Quality independent of time	(S
DCGAN	Limited to trained genres	Stable. Generally good and smooth	Slower. Quality improves with time	C f r€
1. "Object/Defect Removal via Single-image Super-resolution on NLM-priority-based Inpainting and Sparse Coding				

Refs:

"Image Completion with Deep Learning in Tensorflow" by Amos, Bamos "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" by Radford et al.