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Motivation Related Work

Image completion (inpainting) is an active topic in CV research that has 1. "Review of Difterent Inpainting 5 - wjmage Inpainting Through Neural Networks Hallucinations” by Fawzi et
numerous applications: picture restorations, scene reconstruction, etc. Algorithms™ by Patel et al. al. (focuses on image inpainting techniques with pre-trained networks)
Although countless number of algorithms engineered, comparisons between 3. “Mask-specific inpainting
different inpainting algorithms are rarely highlighted ‘ with deep neural networks”
We strive to give a clear and in-depth analysis of two of the representative | B =l fi1Pe B - by Schuler et al. (presents
and groundbreaking algorithms used for inpainting: DCGAN and Exemplar- ' v SN SR SN techniques for directly

based inpainting " B mapping the masks to their
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