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Abstract
I We experiment with the extraction of

physics-based features by utilizing synthesized
data as ground truth.

I We utilize these extracted features to perform
image space manipulations.

I We model our network as a semisupervised
adversarial autoencoder, and train our encoder
to extract features corresponding to physical
properties of the image-described scene.

Motivation

An existing issue with style transfer is that results
are often asthetically pleasing yet not very
realistic. We think it would be interesting to see if
we could work on this problem by enforcing
physical constraints on image generation via semi
supervised methods.

Motivated by recent work on interesting
applications of deep learning to image synthesis,
we

explore a hybrid technique between
completely data-based methods and
physics-based generative models, by training
a joint encoder-decoder network that performs

extraction of graphical appearance on the
encoder end, and learns

an feature-based 2D render engine on the
decoder end.

Our Approach

We use a similar framework to [3], where we train
a encoder on some number of extrinsic features
such as depth, surface normals, texture, and
lighting, as well as some variational amount of
hidden intrinsic parameters,

and train a decoder to act as a 2D image space
renderer, which attempts to output the original
image given the feature vector as generated by
the encoder.

Based on the positive results reported by [1] and
[9] for image generation from feature vector
modifications, we use a pretrained VGG19 network
as our first layer for the encoder network, and
combine that with existing architecture from [3] for
our initial results.

Architecture

The architecture can be split into three general
components, the encoders, the decoder, and the
discriminators.

We train separate encoders via semi-supervised
methods, where first for the intrinsic feature vector,
we append the ground truth features we obtained to
the encoder output to pass to the decoder.

For each extrinsic feature encoder, we remove the
ground truth feature corresponding to it and train an
encoder for it, still appending the other ground truth
features and the trained intrinsic vector. This is a
variation on [3]’s methods.

For each feature encoder, we utilize an adversarial
network discriminator during training time to
enforce a gaussian prior on the encoder outputs.

For our decoder, we swap out our first fully
connected layer each time we replace the ground
truth features with the feature encodings.

Data

The main challenge of this project is the data collection; as described above, we need ground truth that
is not easily measurable in the real world. Few existing datasets go beyond RGBD, so we ended up
having to spend a significant amount of time on data collection.

We synthesize our own data by heavily augmenting pbrt3, a state of the art research-oriented renderer,
to output qualities such as material approximations, surface normals, depth, lighting etc. A visualization
of two scenes from different angles are as shown below.

From left to right: original image, depth map, light intensity map, material approximation, and normal
map.

Implementation

We used pytorch to implement our models, and
augmented existing C++ code to synthesize our
data.

Results

Still running due to complications with the dataset,

will paste a page on when poster gets printed...

Future Work
1. How does the number of intrinsics in the

encoder output affect accuracy?
2. Can we effective perform image relighting or

recoloring via the manipulation of the decoder’s
input?

3. What types of images are hard to work with?
Can we capture complex phenomena such as
reflection and subsurface scattering?
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