
Exploring Generative Models for Semi-Supervised Learning
Daniel De Freitas Adiwardana, Akihiro Matsukawa, Jay Whang

Stanford Center for Professional Development / Google

Background

Semi-supervised learning tries to take advantage of
unlabeled data from the same distribution to im-
prove performance on a supervised task. One com-
mon class of techniques is based on label propaga-
tion, which attempts to “smear” the ground truth
labels from the labeled examples to the unlabeled
ones based on some similarity heuristic. Another
class of techniques attempts to use the unlabeled
data directly in the training objective, for example
to first train an autoregressive model to initialize
good weights, or to train for some joint objective. It
is this second class that we focus on in this work.

Dataset

We measure the performance of semi-supervised
techniques on MNIST digit classification [1]. Our
baseline is a convolutional neural network (CNN).
The purpose of this model is to provide fair super-
vised classification performance. One key metric we
focus on is the number of labeled data points re-
quired to reach similar level of performance as the
baseline model. If we are to truly benefit from semi-
supervised techniques, the use of unlabeled data
should allow us to reach similar performance with
fewer labeled examples.

Problem Statement

Note that this problem statement is presented fairly
generally, so as to be applicable to different genera-
tive models. We are given a dataset D = {X, Y, X ′}
where (X, Y ) are the labeled points, and X ′ is the
rest of the unlabeled data, which is often orders
of magnitude larger than X . Our experiments in-
volve first training a generative model U({X, X ′})
then transferring its features to a supervised task
S(X, Y ; U).
We compare the performance of this to the model
trained only on the available supervised data,
S ′(X, Y ) in prediction ability and amount of data
required to converge to good results. We also jointly
train a generative model with a discriminative model
(i.e. classifier) using all of {X, Y, X ′}. This ap-
proach was inspired by the work of Salimans et al.
[3].

Samples from Generative Models

To learn the data distribution of unlabeled example
images, we considered the two most powerful gen-
erative models: Deep Convolutional GAN [2] and
PixelRNN [4]. Here we include samples of digit im-
ages generated by the models we trained.

Figure 1: Samples from DCGAN (left) and PixelRNN (right).

PixelRNN Results

•We generated PixelRNN hidden states for every
image in the MNIST and used that as input for
supervised classification. In other words, for each
MNIST image we obtained a 28x28x64
embedding that contains features learned via the
unsupervised training of the PixelRNN model.

•The “Golden 10”
• Each image embedding contains 28x28x64 = 50,176
unsupervised features.

• Using all features with just a linear classifier yields 99%
test accuracy.

• We then trained a linear model with just the 10 features
that maximize the Pearson linear correlation scores
(instead of 50,176) and obtained test accuracy of 84.16%
indicating the existence of unsupervised features that are
strongly correlated with the concept of digit types.
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Figure 2: Test set accuracy of using PixelRNN embeddings vs.
baseline usage of pixels. The classifier is a CNN for both.

PixelRNN Results (cont’d)

•Which RNN time steps are the most useful?
• We plotted the weights of a linear classifier trained using
embeddings, MNIST labels and L1 regularization to find
which of the embedding time steps were the most
predictive.
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Figure 3: Linear classifier weights for digit 3.

Multi-class GAN Results

By combining the DCGAN architecture [2] and the
work of Salimans et al. [3], we created a semi-
supervised DCGAN model where the discriminator
loss consists of three components:

• (supervised loss) the cross-entropy loss from the
predicted distribution over K(= 10) digit classes:
−Ex,y∼pdata

[log pmodel(y|x, y < K + 1)]
• (unsupervised loss) the loss from classifying
unlabeled data points as real, i.e. class 6= K + 1:
−Ex∼pdata

[log(1− pmodel(y = K + 1|x))]
• (GAN sample loss) the loss from classifying
generate4d images as fake, i.e. class = K + 1:
−Ex∼G[log pmodel(y = K + 1|x)]

Notice that an artificial “fake” class is added, corre-
sponding to the class K + 1. This approach allows
us to jointly train the discriminator network to serve
two functions: as a classifier over K classes, and as a
discriminator between real and fake images (K real
classes vs. the “fake” class). Our model performs
better than what was reported in [3], presumably be-
cause of the convolutional generator network based
on DCGAN instead of a fully-connected one.

Multi-class GAN Results (cont’d)
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Figure 4: Test set accuracy, trained on subsets of training
data: baseline CNN vs. DCGAN-based model. Notice that the
DCGAN-based model performs much better than the baseline
model, especially when there are very few examples. It achieves
84% accuracy when only single image is provided for each class
for a total of 10 labeled training examples.

Analysis and Conclusion

Generative models can learn semantic representa-
tions and constraints that used to come from labeled
data. PixelRNN embeddings promoted an increase
in test accuracy of up to 30% when only training
with 1 example of each digit. Augmenting the usual
supervised loss with the DCGAN’s unsupervised loss
allowed us to obtain 96% test accuracy with only
50 examples. Further improvements to generative
models and scaling up to larger amounts of unla-
beled data could yield even more performance gains
on supervised tasks and label reduction.
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