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Given a small number (5%) of labeled satellite images and large number
(95%) of unlabeled satellite images, we use the semi-supervised loss in
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Discriminator Network Visualization
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Conclusions & Future Work

o On the left are shown the
64 conv first layer NIR
= filters with “same init” at
convergence. On the right
are the 64 conv first layer
NIR filters with “random
B init”

1. (C) Model is capable of over-fitting to data showing sufficient capacity
2. (C) Asset Wealth Index prediction better than simply using nightlights
3. (FW) Adding more tasks will help reduce over-fitting and increase
feature generalization. Train WGAN Generator to convergence and use it
for the semi-supervised learning tasks
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