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Does	Mul;-task	 learning	 that	 incorporates	a	WGAN-GP	 loss	 allow	us	 to	
overcome	the	scarcity	of	labels	to	perform	semi-supervised	learning?		

Research	Ques/on:		

Obtaining	 reliable	 data	 describing	 economic	 livelihoods	 at	 a	 granularity	
that	 is	 informa;ve	 to	 policy-makers	 requires	 expensive	 and	 logis;cally	
difficult	 surveys,	 par;cularly	 in	 the	 developing	world.	We	would	 like	 to	
use	 mul;-spectral	 satellite	 images	 from	 LandSat7	 to	 predict	 poverty	
related	 metrics	 such	 as	 an	 Asset	 Wealth	 Index	 (AWI),	 nightlights,	
popula;on	density,	distance	to	nearest	road,	land	cover	type,	etc.	

Previous	Approaches:	
1.  [1]	use	transfer	learning	to	predict	nightlight	intensity	
2.  [2]	propose	the	gradient	penalty	method	for	stable	training	of	WGANs	
3.  [3]	propose	semi-supervised	GAN	training	
Problem	Statement:	
Given	a	small	number	(5%)	of	labeled	satellite	images	and	large	number	
(95%)	of	 unlabeled	 satellite	 images,	we	use	 the	 semi-supervised	 loss	 in	
[3]	across	mul;ple	tasks	simultaneously	and	the	WGAN-GP	loss	proposed	
in	[2]	as	an	addi;onal	task	for	stable	training	of	the	generator.	Tasks	are	
weighted	propor;onal	to	their	importance	in	predic;ng	the	asset	wealth	
score.		

Data	samples	from	all	over	
the	African	con;nent	
balanced	by	nightlight	classes	
(All	Africa	Dataset)	

Data	 samples	 from	 near	 the	
loca;ons	 where	 DHS	 data	
surveys	 are	 available	 with	
65%	 rural,	 20%	 semi-urban	
and	 15%	 urban	 (Around	 DHS	
Dataset)		

Loca;ons	
where	DHS	
data	surveys	
are	available	

Data	points	are	labeled	based	on	nightlight	classes	of	which	there	are	3:		
Rural	(class	0),	Semi-Urban	(class	1)	and	Urban	(class	2).			

well with human judgment. We find that it’s important to evaluate the metric on a large enough
number of samples (i.e. 50k) as part of this metric measures diversity.

5 Semi-supervised learning

Consider a standard classifier for classifying a data point x into one of K possible classes. Such
a model takes in x as input and outputs a K-dimensional vector of logits {l

1

, . . . , lK}, that can
be turned into class probabilities by applying the softmax: pmodel(y = j|x) =

exp(lj)PK
k=1

exp(lk)
. In

supervised learning, such a model is then trained by minimizing the cross-entropy between the
observed labels and the model predictive distribution pmodel(y|x).
We can do semi-supervised learning with any standard classifier by simply adding samples from
the GAN generator G to our data set, labeling them with a new “generated” class y = K + 1, and
correspondingly increasing the dimension of our classifier output from K to K + 1. We may then
use p

model

(y = K + 1 | x) to supply the probability that x is fake, corresponding to 1 �D(x) in
the original GAN framework. We can now also learn from unlabeled data, as long as we know that
it corresponds to one of the K classes of real data by maximizing log pmodel(y 2 {1, . . . ,K}|x).
Assuming half of our data set consists of real data and half of it is generated (this is arbitrary), our
loss function for training the classifier then becomes

L = �E
x,y⇠pdata(x,y)[log pmodel(y|x)]� E

x⇠G[log pmodel(y = K + 1|x)]
= Lsupervised + Lunsupervised, where

Lsupervised = �E
x,y⇠pdata(x,y) log pmodel(y|x, y < K + 1)

Lunsupervised = �{E
x⇠pdata(x) log[1� pmodel(y = K + 1|x)] + E

x⇠G log[pmodel(y = K + 1|x)]},

where we have decomposed the total cross-entropy loss into our standard supervised loss function
Lsupervised (the negative log probability of the label, given that the data is real) and an unsupervised
loss Lunsupervised which is in fact the standard GAN game-value as becomes evident when we substi-
tute D(x) = 1� pmodel(y = K + 1|x) into the expression:

Lunsupervised = �{E
x⇠pdata(x) logD(x) + Ez⇠noise log(1�D(G(z)))}.

The optimal solution for minimizing both Lsupervised and Lunsupervised is to have
exp[lj(x)] = c(x)p(y=j,x)8j<K+1 and exp[lK+1

(x)] = c(x)pG(x) for some undeter-
mined scaling function c(x). The unsupervised loss is thus consistent with the supervised loss in
the sense of Sutskever et al. [13], and we can hope to better estimate this optimal solution from
the data by minimizing these two loss functions jointly. In practice, Lunsupervised will only help if
it is not trivial to minimize for our classifier and we thus need to train G to approximate the data
distribution. One way to do this is by training G to minimize the GAN game-value, using the
discriminator D defined by our classifier. This approach introduces an interaction between G and
our classifier that we do not fully understand yet, but empirically we find that optimizing G using
feature matching GAN works very well for semi-supervised learning, while training G using GAN
with minibatch discrimination does not work at all. Here we present our empirical results using this
approach; developing a full theoretical understanding of the interaction between D and G using this
approach is left for future work.

Finally, note that our classifier with K + 1 outputs is over-parameterized: subtracting a general
function f(x) from each output logit, i.e. setting lj(x)  lj(x) � f(x)8j, does not change the
output of the softmax. This means we may equivalently fix lK+1

(x) = 08x, in which case Lsupervised
becomes the standard supervised loss function of our original classifier with K classes, and our
discriminator D is given by D(x) =

Z(x)

Z(x)+1

, where Z(x) =

PK
k=1

exp[lk(x)].

5.1 Importance of labels for image quality
Besides achieving state-of-the-art results in semi-supervised learning, the approach described above
also has the surprising effect of improving the quality of generated images as judged by human
annotators. The reason appears to be that the human visual system is strongly attuned to image
statistics that can help infer what class of object an image represents, while it is presumably less
sensitive to local statistics that are less important for interpretation of the image. This is supported
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Loss	Func/on	Defini/ons	from	[2]	

Algorithm 1 WGAN with gradient penalty. We use default values of � = 10, ncritic = 5, ↵ =

0.0001, �1 = 0, �2 = 0.9.
Require: The gradient penalty coefficient �, the number of critic iterations per generator iteration

ncritic, the batch size m, Adam hyperparameters ↵,�1,�2.
Require: initial critic parameters w0, initial generator parameters ✓0.

1: while ✓ has not converged do
2: for t = 1, ..., ncritic do
3: for i = 1, ...,m do
4: Sample real data x ⇠ P

r

, latent variable z ⇠ p(z), a random number ✏ ⇠ U [0, 1].
5: ˜

x G

✓

(z)

6: ˆ

x ✏x+ (1� ✏)

˜

x

7: L

(i)  D

w

(

˜

x)�D

w

(x) + �(kr
x̂

D

w

(

ˆ

x)k2 � 1)

2

8: end for
9: w  Adam(r

w

1
m

P
m

i=1 L
(i)
, w,↵,�1,�2)

10: end for
11: Sample a batch of latent variables {z(i)}m

i=1 ⇠ p(z).
12: ✓  Adam(r

✓

1
m

P
m

i=1�Dw

(G

✓

(z)), ✓,↵,�1,�2)

13: end while

4 Gradient penalty

We now propose an alternative way to enforce the Lipschitz constraint. A differentiable function
is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere, so we consider di-
rectly constraining the gradient norm of the critic’s output with respect to its input. To circumvent
tractability issues, we enforce a soft version of the constraint with a penalty on the gradient norm
for random samples ˆ

x ⇠ P
x̂

. Our new objective is

L = E
x̃⇠P

g

[D(

˜

x)]� E
x⇠P

r

[D(x)]

| {z }
Original critic loss

+� E
x̂⇠P

x̂

⇥
(kr

x̂

D(

ˆ

x)k2 � 1)

2
⇤
.

| {z }
Our gradient penalty

(3)

Sampling distribution We implicitly define P
x̂

sampling uniformly along straight lines between
pairs of points sampled from the data distribution P

r

and the generator distribution P
g

. This is moti-
vated by the fact that the graph of the optimal critic consists of straight lines connecting points from
P
r

and P
g

(see subsection 2.3). Given that enforcing the unit gradient norm constraint everywhere
is intractable, enforcing it only along these straight lines seems sufficient and experimentally results
in good performance.

Penalty coefficient All experiments in this paper use � = 10, which we found to work well across
a variety of architectures and datasets ranging from toy tasks to large ImageNet CNNs.

No critic batch normalization Most prior GAN implementations [21, 22, 2] use batch normaliza-
tion in both the generator and the discriminator to help stabilize training, but batch normalization
changes the form of the discriminator’s problem from mapping a single input to a single output to
mapping from an entire batch of inputs to a batch of outputs [22]. Our penalized training objective is
no longer valid in this setting, since we penalize the norm of the critic’s gradient with respect to each
input independently, and not the entire batch. To resolve this, we simply omit batch normalization
in the critic in our models, finding that they perform well without it.

Our method works with normalization schemes which don’t introduce correlations between exam-
ples. In particular, we recommend layer normalization [3] as a replacement for batch normalization.

Two-sided penalty We encourage the norm of the gradient to go towards 1 (two-sided penalty)
instead of just staying below 1 (one-sided penalty). In practice, we found this to converge slightly
faster and to better optima. Empirically this seems not to constrain the critic too much, likely because
the optimal WGAN critic anyway has gradients with norm 1 almost everywhere under P

r

and P
g

and in large portions of the region in between (see subsection 2.3).
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WGAN-GP	Loss	for	WGAN	Training	from	[3]	

Class 0 1 2
Train 59896 18486 13140

Validation 2805 883 788
Test 1330 681 711
Total 64031 20050 14639

Table 1: A description of the per-class distribution of the
available data and a 70-20-10 train-val-test split

multitask setting, we have 91522 number of total satellite
images which are bucketed into the 3 classes mentioned
before i.e. rural, semi-urban and urban. There are 64031
images in the rural bucket, 20050 images in the semi-urban
bucket and 14639 images in the urban bucket. As is evident,
these classes are not class-balanced. The train-val-test splits
do not overlap with each other. However, there are images
within the training dataset that have overlaps. Each model-
ing task performed in the multi-task training paradigm is as-
sociated with a weight that is proportional to the importance
of accuracy of prediction for that task. Said differently, the
weight is proportional to the cost incurred when an incor-
rect predictions is made for a particular learning task. For
e.g. in our case, being able to predict the night-light inten-
sity and AWI score correctly is more important than some
of the other tasks. In addition, every example in a class
is weighted inversely proportional to the number of avail-
able examples in that class so that the total importance of
all examples per class is the same. Thus, in effect, we cal-
culate the product of the two aforementioned weights as a
“weight-per-example-per-class-per-task”. We have 4839 lo-
cations where we have labels from the DHS survey for AWI
values and 86683 locations where there are no labels for
the asset values. We call this dataset as the “real dataset”
and distinguish the points where we have labels by calling
them “labeled real data” and those without labels by calling
them “unlabeled real data”. As pointed out in [7], GANs
[3] boost the learning power of a multitask model. It has
been shown that Wasserstein GANs [1] are a more stable
variant of GANs. This is implemented by having a genera-
tor supplying “fake images” and the discriminator being our
multitask model with the added caveat that if each task is as-
sociated with K classes, the model now has to predict (K+1)
classes - K of them associated with real classes of interest
while the added class being the case where the provided im-
age is fake. Thus, the multitask loss function is minimized
when the model (i) can predict the class association to be
(K+1) on all tasks if the provided image is fake, (ii) can
associate a real labeled image with the correct label for the
image, and (iii) provided an unlabeled real image, it predicts
that the image is not in the (K+1)-th class. This is achieved
using the methodology in [8]. Recently, [4] introduced the
idea of enforcing a soft version of the 1-Lipschitz constraint

required to avoid the weight-clipping necessary for avoid-
ing the exploding gradients problem in training WGANs by
adding a Gradient Penalty. We implement Algorithm 1 from
[4] using the definition of D(x) from [8] as our loss func-
tion and training algorithm that incorporates labeled and un-
labeled real data and GAN generated fake data.

(a) (b) (c)

Figure 1: Geographic locations of satellite image samples
which are classified as rural (class 0 in blue), semi-urban
(class 1 in green), and urban (class 2 in red).

(a) (b) (c)

Figure 2: Geographic locations of satellite image samples
which are classified as (a) rural (class 0), (b) semi-urban
(class 1), and (c) urban (class 2). Within each class, the data
is split as training (blue), validation (red) and test (green)

Figure 3: A histogram of scaled assets with 50 buckets
demonstrating the distribution of the assets.

4. Intermediate Results

Our efforts so far have been focused on replicating the
results by [6]. To this end, we have created a pipeline that
allows us to train a model based off the 50-layer ResNet
described in [5] to predict binned night light categories.
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Algorithm 1 WGAN with gradient penalty. We use default values of � = 10, ncritic = 5, ↵ =

0.0001, �1 = 0, �2 = 0.9.
Require: The gradient penalty coefficient �, the number of critic iterations per generator iteration
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We now propose an alternative way to enforce the Lipschitz constraint. A differentiable function
is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere, so we consider di-
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Penalty coefficient All experiments in this paper use � = 10, which we found to work well across
a variety of architectures and datasets ranging from toy tasks to large ImageNet CNNs.

No critic batch normalization Most prior GAN implementations [21, 22, 2] use batch normaliza-
tion in both the generator and the discriminator to help stabilize training, but batch normalization
changes the form of the discriminator’s problem from mapping a single input to a single output to
mapping from an entire batch of inputs to a batch of outputs [22]. Our penalized training objective is
no longer valid in this setting, since we penalize the norm of the critic’s gradient with respect to each
input independently, and not the entire batch. To resolve this, we simply omit batch normalization
in the critic in our models, finding that they perform well without it.

Our method works with normalization schemes which don’t introduce correlations between exam-
ples. In particular, we recommend layer normalization [3] as a replacement for batch normalization.

Two-sided penalty We encourage the norm of the gradient to go towards 1 (two-sided penalty)
instead of just staying below 1 (one-sided penalty). In practice, we found this to converge slightly
faster and to better optima. Empirically this seems not to constrain the critic too much, likely because
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D-Loss:	
G-Loss:	

Discriminator	Network	Visualiza/on	

Name DHS 
Dataset Same Init RGB Only Asserts r2 Training 

Accuracy
Validation 
Accuracy

All Africa
Random Init X X X 0.51 96% 66%

All Africa
Same Init X ✔ X 0.52 98% 70%

DHS
Same Init ✔ ✔ X 0.53 98% 65%

DHS
Same Init
RGB Only

✔ ✔ ✔ 0.57 97% 68%

Nightlights N/A N/A N/A 0.484 100% 100%

[1] N/A N/A N/A 0.66 N/A N/A

DHS		
Same	Init	

DHS	RGB		
Same	Init	

All	Africa		
Random	Init	

All	Africa		
Same	Init	

RGB	Bands	always	ini/alized	with	ResNet	Pretrained	Weights.	For	the	hyperspectral	bands:	
Random	Init	=	Truncated	Normal	with	Mean	and	Standard	Devia/on	from	Resnet	Pretrained	Weights	

Same	Init	=	Mean	of	the	RGB	channels	of	the	ResNet	Pretrained	weights	

3.	Salimans,	et	al.	“Improved	Techniques	for	Training	GANs”,	
	arXiv:1606:03498,	2016	
4.	Prof.	Stefano	Ermon,	Neal	Jean,	Volodymyr	Kuleshov	and	the	
Sustainability	and	AI	Lab	at	Stanford	University	
	

On	 the	 le\	 are	 shown	 the	
64	 conv	 first	 layer	 NIR	
filters	 with	 “same	 init”	 at	
convergence.	 On	 the	 right	
are	 the	 64	 conv	 first	 layer	
NIR	 filters	 with	 “random	
init”	

Convergence	behavior	of	loss:	
(Orange)	DHS	Same	Init	
(Green)	DHS	RGB	Same	Init	
(Blue)	All	Africa	Random	Init	
(Yellow)	All	Africa	Same	Init	

1.	(C)	Model	is	capable	of	over-fikng	to	data	showing	sufficient	capacity	
2.	(C)	Asset	Wealth	Index	predic;on	beler	than	simply	using	nightlights	
3.	(FW)	Adding	more	tasks	will	help	reduce	over-fikng	and	increase	
feature	generaliza;on.	Train	WGAN	Generator	to	convergence	and	use	it	
for	the	semi-supervised	learning	tasks		
	
	

AWI	is	predicted	using	
a	linear	model	over	
features	extracted	

from	the	network.	The	
metrics	used	to	

evaluate	a	model	are	
the	accuracy	of	

predic/on	and	the	
Pearson	Correla/on	

Coefficient	


