Multi-instance Text-to-Photo Image Generation Using Stacked Generative Adversarial Networks

Alex Fu | Yiju Hou
CS 231N Class Project, Spring 2017

INTRODUCTION

Image Generation
- Unsolved challenging problem in Computer Vision
- Potential applications: photo editing, video generation and digital design

Current State-of-Art
- Generate high-resolution images of a single instance of birds or flowers using StackGan
- Generate Images from captions with attention by extending DRAW

PROBLEM & DATASET

Task
Generate multi-instance images from multiple categories by interpreting the given text description.

Approach
- Modularized deep neural network based on TensorFlow and PyTorch
- Experiment with various convolutional neural network architectures, text encoders, decoders, attention mechanism, etc.

COCO Dataset
- Largest publicly available recognition, segmentation, captioning dataset.
- 80 categories, 300,000+ images.
- Multiple objects per image.
- More than 300,000 images.

Evaluation
Inception Score

MODEL

EXPERIEMENTS & TRAINING

Text
- Text Encoder
 - Char-CNN-RNN
 - Skipthoughts
 - Match-LSTM
 - Coattention
- Decoder
 - Char-CNN-RNN
 - Skipthoughts
 - Ans-Ptr
 - LSTM
 - Ans-Ptr

Experiments
- Residual blocks
- Conditional augmentation
- Additional GAN stage to increase the resolution of generated images
- Feed additional COCO classification data to create word imbedding
- LR exponential annealing and manual tuning

Optimizations
- Dropout
- Trainable end-of-sentence sentinel
- Flexible RNN sequence length

RESULTS & CONCLUSIONS

Training
- Decreasing generator loss verifies model potential
- Linear loss drop indicates insufficient LR
- Gap between Train/Val indicates overfitting
- For dropout to improve the performance on Val, we need to reconsider its location and rate

Current Results
- The output images of stageI do not have clear composition and distinct object shapes as the results in training on CUB and Oxford-102 datasets
 - Hypnosis 1: Suffer from insufficient LR
 - Hypnosis 2: The problem will be solved by adding one extra GAN layer
 - Hypnosis 3: The current architecture is not expressive enough to capture the complexity of COCO dataset

FUTURE DIRECTIONS

Architecture
- Experiment with more expressive encoders, decoders and attention mechanism
- Increase the complexity of the model to better capture the interaction of objects
- Use attention mechanism to determine the pixel size of generated objects, so that the model can generate high-quality objects in the foreground

Training
- Use larger embeddings and better methods to preprocess text data
- Identify the right places to apply dropout
- Hyper-parameter fine tuning:
 - Dropout rate
 - Learning rate