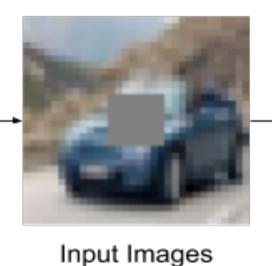


DEEP IMAGE INPAINTING Carlito Burlaco, L. Duperier, Y. Le Calonnec,

PROBLEM

Original Images



Output Images

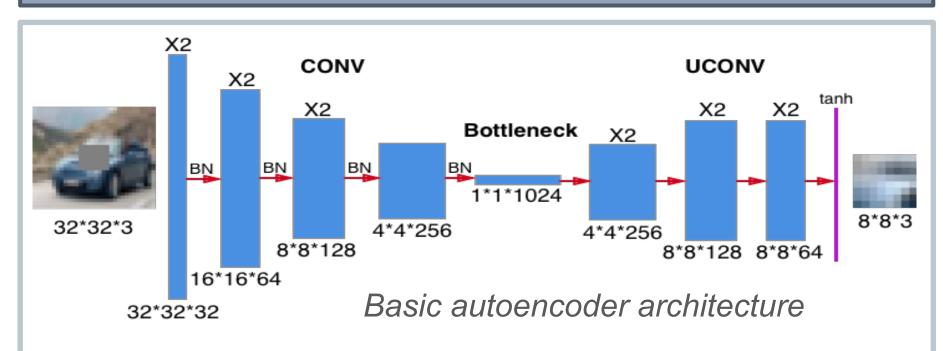
- **Reconstruct** missing parts of images
- Crucial for: restoration, image editing
- Previous approaches: - Repeat textures/patterns but can't reconstruct objects
- No real understanding of context Evaluation: pixel-wise L2 loss
- Real: $Y \in \mathbb{R}^{n \times n \times 3}$ vs prediction: $\hat{Y} \in \mathbb{R}^{n \times n \times 3}$.

$$L_{i} = \sum_{p,q,r} (Y_{p,q,r}^{(i)} - \hat{Y}_{p,q,r}^{(i)})^{2}$$

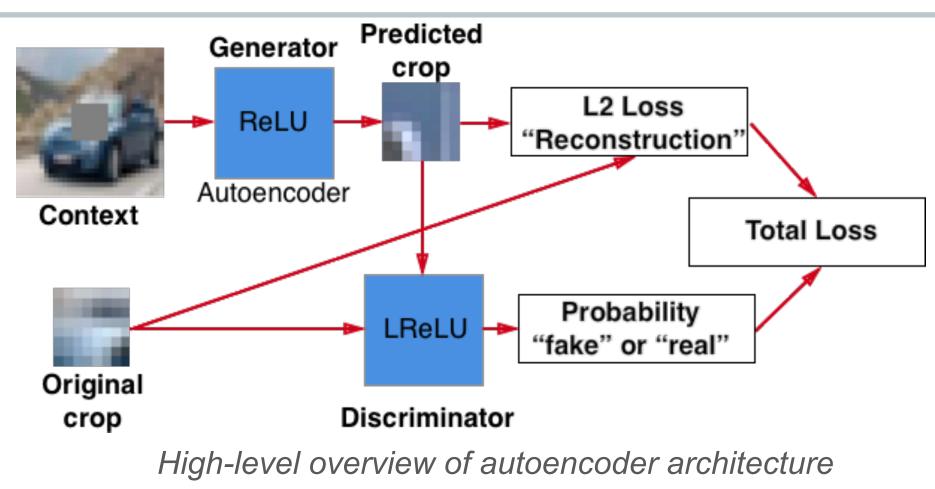
DATASET

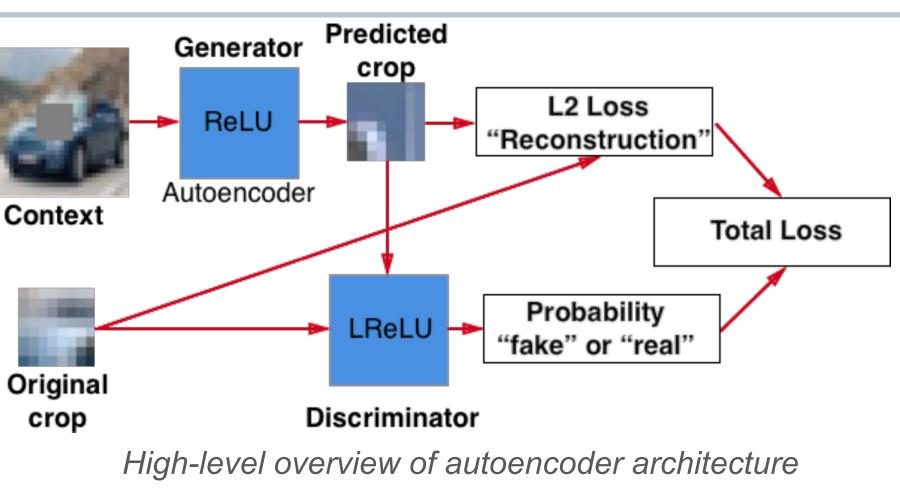
- **CIFAR10**: 50k train / 10k tests
- 80m tiny images (32x32x3, 8x8 center missing)
- **Data augmentation**: random hue, saturation, blur...

AUTOENCODER



- **Bottleneck** forces network to learn a **high-level**, compact representation of the context.
- We tried different **architectures** for encoder: VGG, Inception, ResNets, AlexNet.
- **Transfer learning**: use pre-trained first layers for encoder.





- **Discriminator** (D) is a CNN trained to **discern** real from fake images.
- **Generator** (G) is an autoencoder.
- Usually in GANs, G generates outputs from random inputs: we use the **context** instead.
- G improves to fool D, and D learns from G's techniques: extremely hard to train in practice.

- D outputs an unbounded score, not a probability. Train D to convergence at each iteration.
- Clip gradients to ensure Lipschitzianity.

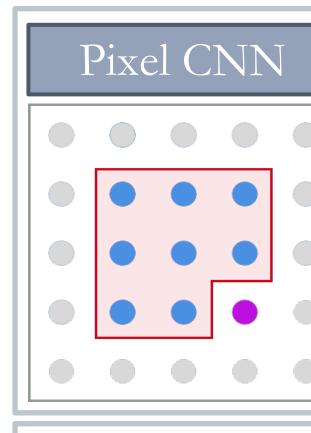
DC-GAN

- Train both networks in **parallel**.
- **No FC** for deeper architectures.

W-GAN

Held out example from our best architecture

- Split along channels.



- a given pixel.
- order: $R \rightarrow G \rightarrow B$

RESULTS / CONCLUSION

Model

Euclidian CNN

DCGAN

WGAN

Pixel CNN

Diagonal BiLST

PIXEL CNN & RNN

Image distribution with conditional pixel probabilities.

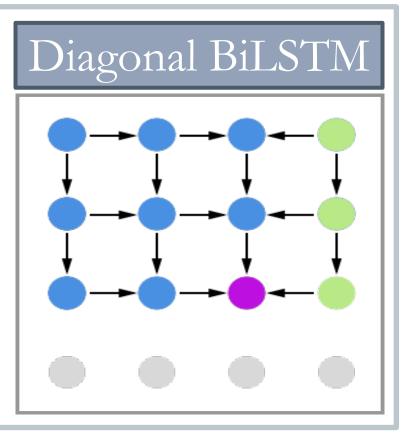
$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$
nels

 $p(x_{i,R}|\mathbf{x}_{<i})p(x_{i,G}|\mathbf{x}_{<i}, x_{i,R})p(x_{i,B}|\mathbf{x}_{<i}, x_{i,R}, x_{i,G})$

- Use **local information** to recursively infer pixel distribution.
- Apply a **convolution** layer on the selected (red) zone to get a 3x256-dimensional vector.
- Parameters **shared** across pixels.
- **Softmax** layer gives probabilities for each channel.

Use information from **top rows**. • LSTM top-left \rightarrow bottom-right • LSTM top-right \rightarrow bottom-left Mix distributions from the two LSTMs to get the distribution of

• Predict channels in a specific



	L2 Loss
N	8.56
	7.49
	4.26
	6.98
Μ	5.27

WGAN + deep autoencoder: highest performance It is crucial to deeply understand the occluded objects • Future work: better GAN training, larger images