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Introduction

§ 2B people carry phones with cameras
§ 1 trillion photos / year

§ 10k-100k personal photo collections

§ Don’t want keyword search on mobiles
§ Visual search

§ Needs starting image

§ Hard to refine

§ Idea: Generative visual query

§ Can one model generate
“cars”, “bridges”, “flowers”, “dogs” … ?

§ Can use reformulate visual (generated) query?
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Problem

§ Difficult to describe textually image details
§ Even harder in mobile and without words

§ Query Example: “White Daffodil”
§ Fails because:

§ White background

§ Yellow Daffodil most common

§ Solution for mobile touch interfaces:
§ Generative, interactive image query

§ Narrow to text category (e.g., “Daffodil”)
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Data

§ Oxford-102 Flower dataset
§ 8189 flower images, 102 classes

§ Adobe Stock 160k (internal) dataset
§ 160k ”squares” samples from 63M images

§ Pre-trained w2v for every image

§ w2v trained based on original tags

§ Adobe Stock 10k ”flowers” dataset
§ 10k sample filtered to “flower” query
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Approach

§ 3 components:
§ TC-GAN: Text-conditional GAN generates images conditioned on w2v (or category)
§ iGAN: Apply editing constraints in latent space to generate image that conforms with constraints
§ GXZ: Inverse GAN to infer a z given a image x

1. iGAN as baseline
§ Train with DCGAN on Oxford-flower-102

2. Concurrently, train TC-GAN based on AC-GAN, Text-to-Image Synthesis, TAC-GAN
§ Oxford-flower-102 for classes
§ Adobe Stock 10k flowers with w2v for Text-to-Image Synthesis

3. Train GXZ based on BiGAN, BEGAN, AEGAN, …
4. Integrate to work as one model
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Model
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Results
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Demo

§ Query: “Daffodil”
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Conclusion

§ Shown (manually) it’s possible to connect iGAN with text-conditional GAN (TC-GAN)
§ However:

§ TC-GAN still very poor discriminating using text (maybe overfitting/model collapse?)

§ Pretrained w2v used in TC-GAN seem very noisy

§ Work-in-progress integrating iGAN and TC-GAN

§ Further Analyses:
§ Ablation study whether TC-GAN narrows iGAN choices within category or w2v

§ Measure diversity of generated images

§ Future Steps:
§ Improve TC-GAN: Focus on categories rather than text (w2v)

§ TC-GAN and iGAN as one single model
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