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● AutoColorization of gray images has powerful applications in 
image/video compression and info-mining from historic video/images.

● Inherently, it’s a multi-modal problem. e.g. differently colored dresses 
in right are correct outputs for a gray scale version this image.

● Problem statement is not to produce the original images, but rather 
reasonably colored images that can fool a human observer.

Introduction

● Dataset -> CIFAR-10 -> 50,000 training and 10,000 validation images 
of size 32*32*3. Low resolution images are computationally cheaper 
to train and hence enables faster prototyping.

● Designed a CNN architecture which takes in grayscale image and 
generates a coloured version of the input image. 
a. Output Space : Explored two options for the output space. 

■ RGB images -> Regenerate all three components (RGB) as 
output of the model using the input grayscale image.

■ UV component ->  Generate the UV components from the 
luminance (Y) and concatenate YUV components to generate 
the final image. 

b. Loss Functions :
■ Regression Losses: Tried L2, L1 and Huber loss.
     Huber  loss is a combination of L1 and L2 loss, eq [1] 
■ Classification Loss : Modelled colorization as a classification 

problem where we predict each pixel’s class. Class values are 
picked from a discretized UV space. 

■ Generative Adversarial Networks: Finally we also tried 
employing a GAN network for colorization.

● Huber loss is calculated as follows, (delta=0.5, 1.0). Huber loss for 
delta = 1.0 is smooth L1 loss             
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● To train the GAN network we perform gradient ascent on the 
generator network and discriminator network, their losses are as-
○ Generator loss     = − z∼p(z)[logD(G(z))]

○ Discriminator loss  =    − x∼pdata[logD(x)]− z∼p(z)[log(1−D(G(z)))]

Methodology
The following figures show the different results generated by our models 
for two samples of 16 images each in the test set

                    Gray                          L2 loss                      L1 loss
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Results 
Model AUC (%) Evaluation Test (%)

Grayscale 80.33 22.19

L2 Loss 98.37 67.75

GAN 97.26 61.24

Ground Truth 100 77.76

Conclusions
● Models trained with L1, L2 and Huber/L1 smooth loss give similar 

results for most images
● Images generated using L2 loss are generally sharp and crisp 

However the colors are desaturated.
● To avoid this conservative estimate we are trying to train a 

classification model inspired from [1]
● We trained a GAN model; training a GAN was a challenging involving 

careful adjustment of hyperparameters to avoid unstable learning.
● GANs generate more colorful images as compared to other models, 

but they are less sharper and have artifacts too.
● In future work, we plan to train L2 loss model along with Gaussian 

blurring of input image. 
● Also, we plan to tune our classification based colorization model and 

experiment with LAB color space for our model output.
1. Colorful Image Colorization, Richard Zhang et al, ECCV 2016

- Area under the curve (AUC) measures AUC of the cumulative error distribution in RGB space 
as we sweep across different thresholds.

- Evaluation Test measures classification accuracy of generated images on a pre-trained 
model. For Grayscale, UV component were set to 0.


