
Full Resolution Video Compression
Using Recurrent Convolutional Neural Network

Berk Çoker, Cedric Yue Sik Kin
Stanford University

Introduction

From Netflix to Youtube, most of the platforms we now use are dominated
by video content. According to a Cisco study, video traffic will become
82 percent of the entire consumer internet traffic by 2019 [1]. These
predictions highlight the importance of creating novel ways of transferring
and storing video content.

Figure: Detailed predictions about consumer video consumption from Cisco study

ConvNets have become a prevalent tool in high-level computer vision tasks
like image classification or object detection. But recent work has shown
their relevance to low-level image and video processing tasks. Google
[2] recently showed an autoencoder architecture capable of compressing
and reconstructing full resolution images with performances on par with
standard image compression algorithms such as jpeg while Kapperler et
al. [3] proposed an architecture that is trained on both the spatial and
temporal dimensions of video frames to enhance resolution.

Problem Statement

Given a video of arbitrary dimensions and size, we propose a model that
aims to obtain a noise-free and blur-free compressed version of the video
with variable compression ratios available.

Dataset

We overfit the model by training it on a particular video.

(a) Extract frames from video into a
lossless format like png

(b) Split frames into 32x32x3
quadrants

Figure: Pipeline for preprocessing dataset

[1] Cisco. White paper: Cisco vni forecast and methodology,2015-2020, 2016. [2] G. Toderici et al. Full resolution image compression with recurrent neural networks, 2016.

[3] A. Kapperler et al. Super-resolution of compressed videos using convolutional neural networks. International Conference on Image Processing, 2016.

Method

Figure: Our architecture. We exploit the temporal dependencies between frames.

Our network consists of encoders that reduces the dimensionality of the
frames, and decoders that estimates the original frame; both the encoder
and decoder consist of gated recurrent units. The formulation for GRU,
with input xt and hidden state/output ht is:

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

ht = (1 − zt) ~ ht−1 + zt ~ tanh(Wxt + U(r ~ ht−1))

Figure: Our architecture. We exploit the temporal dependencies between frames.

Experimental Evaluation

For evaluation, we use the most common evaluation metrics to measure
image quality: Peak Signal to Noise Ratio (PSNR) and Structural Simi-
larity Index Measurement (SSIM).

PSNR (Ŷ , Y) = 20 log(s) − 10 log MSE(Ŷ , Y)

SSIM (Ŷ , Y) = (2µŶµY + c1)(2σŶ Y + c2)
(µ2

Ŷ
+ µ2

Y + c1)(σ2
Ŷ

+ σ2
Y + c2)

where s is the maximum possible pixel value (255 in our case), µY denotes
the mean of image Y, µ2

Y the variance, σŶ Y the covariance of the two
images and c1, c2 typically set to 0.01s2 and 0.03s2 respectively.
We then take the average among all the frames to get the final value.

PSNR SSIM
JPEG 37.5847 dB 0.9836

3-RCNN (1 Time Step, Window Size 7) 37.5971 dB 0.9883
3-RCNN (3 Time Step, Window Size 7) 38.8007 dB 0.9910

Table: Our results for 8x compression rates.

(a) Compressed frame in
JPEG format (8x
Compression)

(b) Reconstructed frame
with 3-CRNN, 1 Time
Step, Window Size 7

(c) Reconstructed frame
with 3-CRNN, 3 Time
Step, Window Size 7

Figure: Visual Comparison between JPEG and our model’s outputs

Conclusion

Given the results from the evaluation metrics, we are able to exploit the in-
trinsic temporal dependencies between video frames by considering neigh-
boring frames when predicting a video frame. We are able to reconstruct
video frames from a compressed size with better performance compared
to JPEG compression.
The given results were based on a toy dataset. For future work, we’ll
focus on extending the model’s capacity to reconstruct full video frames
and investigate the usefulness of this technique to applications like security
footage.

