DeepSynth: Synthesizing A Musical Instrument With Video

Tal Stramer
Stanford University, Department of Computer Science

Background

» Creating an electronic instrument requires 1) manually creating
tables to map notes and desired characteristics to audio 2)
physically building a representation of the instrument

e In virtual reality, can we automate the process? Create a playable
virtual instrument based on examples of a real instrument being
played.

» Recent digital synthesizers based on neural network architectures
map individual notes and desired characteristics to audio but ignore
the physical interaction with the original instrument

Problem Statement

e Problem: Given a silent video of a musical instrument being played,
predict the audio outputted by the musical instrument
o Approach: CNN to encode video frames and CNN based
autoregressive model to generate audio conditioned on video
e Evaluation metrics
 Train: Softmax loss on quantized version of audio waveform with
256 buckets. Real audio frames used to generate next
o Test: Same loss. Generated audio frames used to generate next

« Dataset generated based on 20 classical songs in MIDI format fed
into a piano simulator

» Audio waveform generated based on a digital synthesizer of a grand
piano sampled at 4 kHz

 Audio split up into 5 second segments with 2 second overlapping
windows

 Sparse representation of video based on video frames at every note
press

 Data split into 60% training, 20% validation, and 20% testing.

Gty wlidiabibin

Figure 1. Sample video frame

N

| |
§ 30 “ |||‘~lMﬁ ‘ l1 ' :
b 'h‘ u ll,.\\"\'a ‘;f'“\ V L'. ‘illlh' Q "
| \‘\' H | al

-200

@

time (second:)

Figure 2. Sample audio waveform. Figure 3. Single note attack decay

Methods and Materials

« Frame encoder: Convert video frames to feature vectors using VGG-
like CNN
» Audio generator:
e Model audio generation by a stack of causal convolution layers
e Predict audio waveform at each time step based on current video
frame features and previous video features and audio frames.
» Use exponentially increasing dilation factor at each layer to
increase receptive field without decreasing resolution
 Use residual and skip connections to speed up training and allow
for more layers
» Apply dropout to audio inputs to increase reliance on video
frames during training
» Use learning rate annealing to speed up training
 Cost function: Cross-entropy loss over training examples

Experiments

« Experiment with various parameters

« Dropout percentage: 50% or 75% of the audio

« Number of layers in audio generation network: 7 or 10 (affects

receptive field and expressive power)

« Number of features per layer of audio network: 128, 256, or 512
e Run 100 epochs per experiment
« Evaluate validation loss after each epoch on 100 examples from

validation set. Choose model from epoch with lowest loss.

Validation

Number of Features :
Train Loss
Loss

per layer

Dropout

percent

0.5 7 128 1.54 2.91
0.5 7 256 1.42 2.81
0.5 10 512 1.2 2.62
0.75 7 128 1.65 2.73
0.75 7 256 1.60 2.53
0.75 10 512 1.45 2.41

Table 1. Experiment results.

References:
[1] Van den Oord, Aron, et al. ”Wavenet: A generative model for raw audio.” CoRR abs/1609.03499 (2016).

| ;{ AT
/x//l/l/l/l/l/""’"

Figure 4. Illustration of audio generation model from Oord et al [1].

Conv1 Conv2 Maxpool1 Conv3 Convd Maxpool2

l !Re'u m I N I I I - I

Figure 5. Illustration of frame encoder CNN layers

Discussion

 Ability to generate correct audio at test time highly dependent on

using dropout on audio input during training - likely because
otherwise it will rely mostly on previous audio and ignore video

» Generation very slow at test time due to having to generate audio
sequentially - a non-generative network that predicts output only
based on video frames would be much faster.

« Would be interesting to try a regression-based cost function, as
distance between predicted and actual audio relevant to generation
quality and is not captured directly by softmax loss.

Conclusions

« Relatively simple neural architecture can achieve high performance
on generating raw audio from video
« No manual feature engineering or data labeling is a huge benefit.
« Future work:
 Use real videos instead of simulated ones, like piano videos from
the Youtube 8M dataset
« Build a virtual representation of the instrument from video
examples and combine with audio model
« Build a more efficient generator by using low-level optimizations
« Analyze how model behaves on different types of music

