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Introduction

• Gliomas are the most commonly occurring type of brain tumors and are potentially
very dangerous [2, 1], with about 90% of gliomas belonging to a highly aggressive
class of cancerous tumors known as glioblastomas [4].

• Multimodality magnetic resonance imaging is the primary method of screening and
diagnosis for gliomas [4].

• Tumor regions currently are segmented manually by radiologists.

• Segmentation algorithms based on convolutional neural networks (CNNs) have
been shown to be at least as effective as other automated segmentation methods.

Architecture Overview
Baseline Voxel-wise CNN
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Figure 1: Baseline Architecture Diagram. Input is 253 × 4 volume (single slice
shown). Convolutional layers (cyan) followed by ReLU activation. Fully connected
layers (green) implemented as 13-kernel convolutions; first layer is followed by ReLU
and dropout. Scores (red) for background and foreground.

Patch-wise Fully-Convolutional Network Architecture
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Figure 2: Patch-wise Fully-Convolutional Network (FCN) Architecture Diagram. In-
put same as baseline model. Convolutional layers (cyan) followed by ReLU activation,
dropout, and 2×2 max-pooling. Deconvolutional layers (blue) followed by ReLU and
dropout. Scores (red) for background and foreground for entire patch.

Dataset Overview

(a) T1 (b) T1 CE

(c) T2 (d) FLAIR

• MICCAI Brain Tumor Segmentation
(BraTS) Challenge 2017 dataset from [2]

• Images segmented into edema (green), non-
enhancing core (red), enhancing core (yel-
low), and necrotic core (dark red)

• Sample: 220 high-grade glioma, 75 low-
grade glioma patients

• Images segmented by multiple radiologists

• All images 240 × 240 × 155 voxels, contain
simultaneously acquired T1, T1 contrast en-
hanced, T2, and FLAIR images

Segmentation Results
Setup

• Goal: segment tumor from background

• Evaluated using dice score =
2|Predicted Image∩Ground Truth|
|Predicted Image|+|Ground Truth|

• Tested using softmax cross entropy loss with L2 regularization

Results

(a) CNN

(b) FCN
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Figure 3: (a-b) Examples of segmentation generated by algorithm. Correct pixels (blue),
unidentified voxels (red), mis-identified voxels (green). (c) Histogram of dice scores
across validation set. Voxel-wise approaches (mean dice 0.84) performs very strongly
compared to benchmark (mean dice 0.89).

Transfer Learning

• Segmented glioma for REMBRANDT data set (manual tumor segmentation for 130
patients) [3] with model pretrained on BraTS dataset

• Goal: segment tumor from background using different image data

Results

(a) FCN Original

(b) FCN Fine-tuned

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

Dice Score

S
am

pl
e
N
um

b
er

CNN - Original (N = 57)

FCN - Original (N = 57)
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(c) Dice Score Histogram

Figure 4: (a-b) Examples of segmentation generated by algorithm. Correct pixels (blue),
unidentified voxels (red), mis-identified voxels (green). (c) Histogram of dice scores
across validation set. Fine-tuning the model by adding batch-normalization increases
accuracy. Overall, dice scores are inconsistent across the validation set.

Future Work: Full-Image FCN
Full-Image FCN Architecture
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Figure 5: Full-Image FCN Architecture Diagram. Input is full image (single slice
shown). Convolutional layers (cyan) followed by ReLU activation and 2 × 2 max
pooling. Deconvolutional layers followed by ReLU and batch normalization. Output
(red) contains class scores for background and four tumor regions. Primary advantage
of full-image FCN is significant speedup in throughput.

Preliminary Results
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Figure 6: Histogram of dice scores for validation set samples. We tested using both
cross-entropy loss and dice score loss. The Dice score loss model performs better,
but the scores are poor compared to the voxel-wise architectures. This is most likely
due to the model biasing very heavily towards the background class.

Conclusion

• Voxel-wise approach obtains consistently high accuracy (compare with ∼ 0.89 dice
score on previous BraTS benchmarks)

• Transfer learning accuracy is promising but accuracy inconsistent

• Much work to be done for full-image FCN approach
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