Multimodal Brain MRI Tumor Segmentation via Convolutional Neural Networks

Stanford ENGINEERING

Electrical Engineering

Introduction

- Gliomas are the most commonly occurring type of brain tumors and are potentially very dangerous [2, 1], with about 90% of gliomas belonging to a highly aggressive class of cancerous tumors known as glioblastomas [4].
- Multimodality magnetic resonance imaging is the primary method of screening and diagnosis for gliomas [4].
- Tumor regions currently are segmented manually by radiologists.
- Segmentation algorithms based on convolutional neural networks (CNNs) have been shown to be at least as effective as other automated segmentation methods.

Architecture Overview

Baseline Voxel-wise CNN

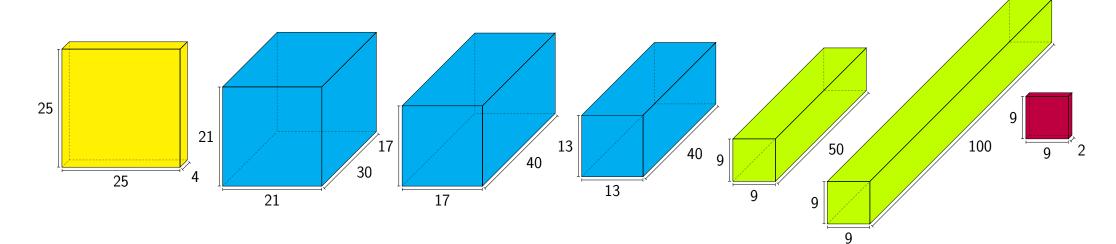


Figure 1: Baseline Architecture Diagram. Input is $25^3 \times 4$ volume (single slice) shown). Convolutional layers (cyan) followed by ReLU activation. Fully connected layers (green) implemented as 1^3 -kernel convolutions; first layer is followed by ReLU and dropout. Scores (red) for background and foreground.

Patch-wise Fully-Convolutional Network Architecture

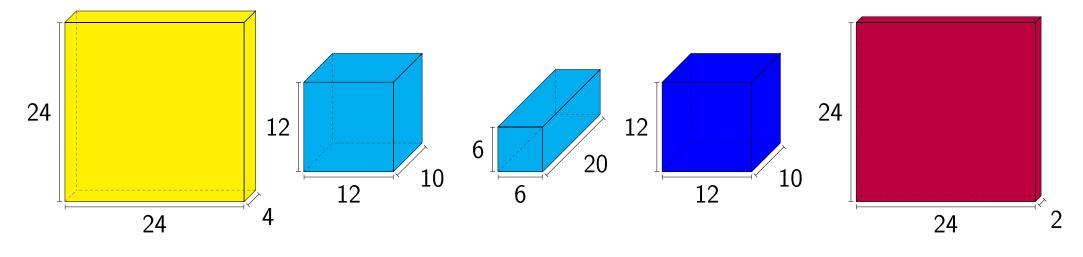
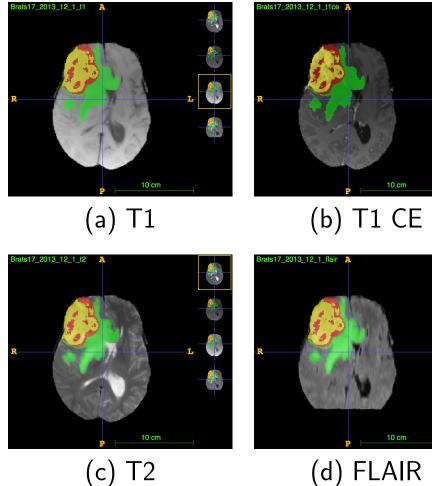
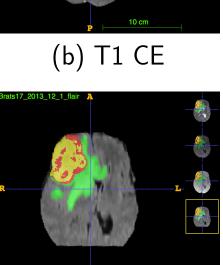


Figure 2: Patch-wise Fully-Convolutional Network (FCN) Architecture Diagram. Input same as baseline model. Convolutional layers (cyan) followed by ReLU activation, dropout, and 2×2 max-pooling. Deconvolutional layers (blue) followed by ReLU and dropout. Scores (red) for background and foreground for entire patch.

Dataset Overview





(d) FLAIR

- Brain Tumor Segmentation MICCAI (BraTS) Challenge 2017 dataset from [2]
- Images segmented into edema (green), nonenhancing core (red), enhancing core (yellow), and necrotic core (dark red)
- Sample: 220 high-grade glioma, 75 lowgrade glioma patients
- Images segmented by multiple radiologists
- All images $240 \times 240 \times 155$ voxels, contain simultaneously acquired T1, T1 contrast enhanced, T2, and FLAIR images

Livue Shen¹ Timothy Anderson^{1,2}

Department of Electrical Engineering, ²Institute for Computational and Mathematical Engineering

Segmentation Results Setup

- Goal: segment tumor from background
- Evaluated using dice score =
- $\frac{2|\mathsf{Predicted Image} \cap \mathsf{Ground Truth}|}{|\mathsf{Predicted Image}|+|\mathsf{Ground Truth}|}$
- Tested using softmax cross entropy loss with L_2 regularization

Results

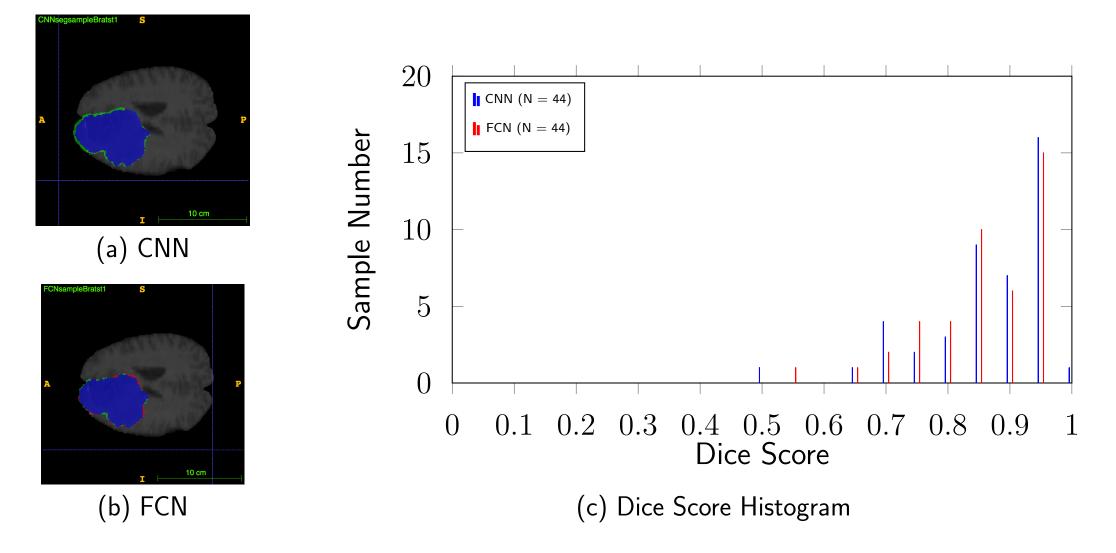
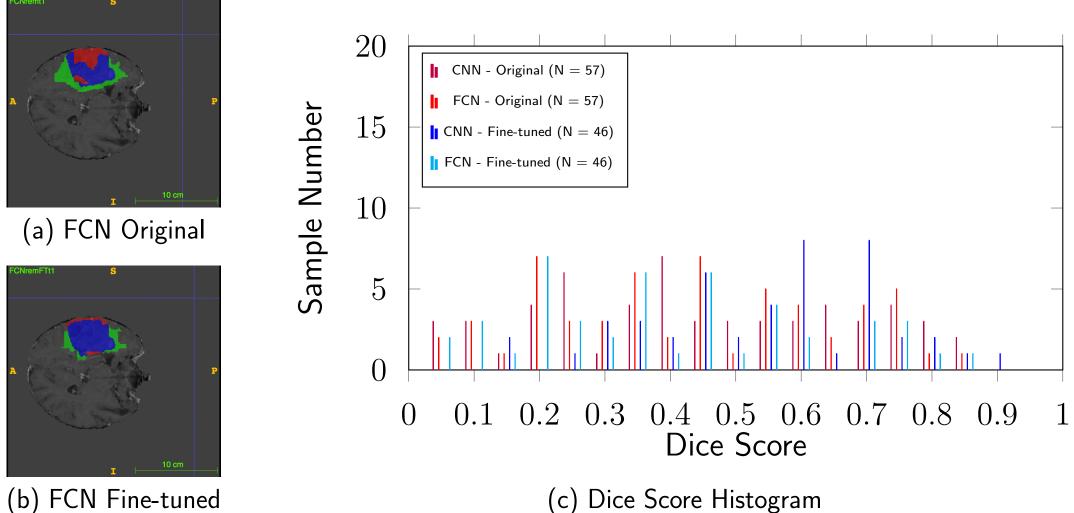


Figure 3: (a-b) Examples of segmentation generated by algorithm. Correct pixels (blue), unidentified voxels (red), mis-identified voxels (green). (c) Histogram of dice scores across validation set. Voxel-wise approaches (mean dice 0.84) performs very strongly compared to benchmark (mean dice 0.89).

Transfer Learning

- Segmented glioma for REMBRANDT data set (manual tumor segmentation for 130 patients) [3] with model pretrained on BraTS dataset
- Goal: segment tumor from background using different image data

Results



(b) FCN Fine-tuned

Figure 4: (a-b) Examples of segmentation generated by algorithm. Correct pixels (blue), unidentified voxels (red), mis-identified voxels (green). (c) Histogram of dice scores across validation set. Fine-tuning the model by adding batch-normalization increases accuracy. Overall, dice scores are inconsistent across the validation set.

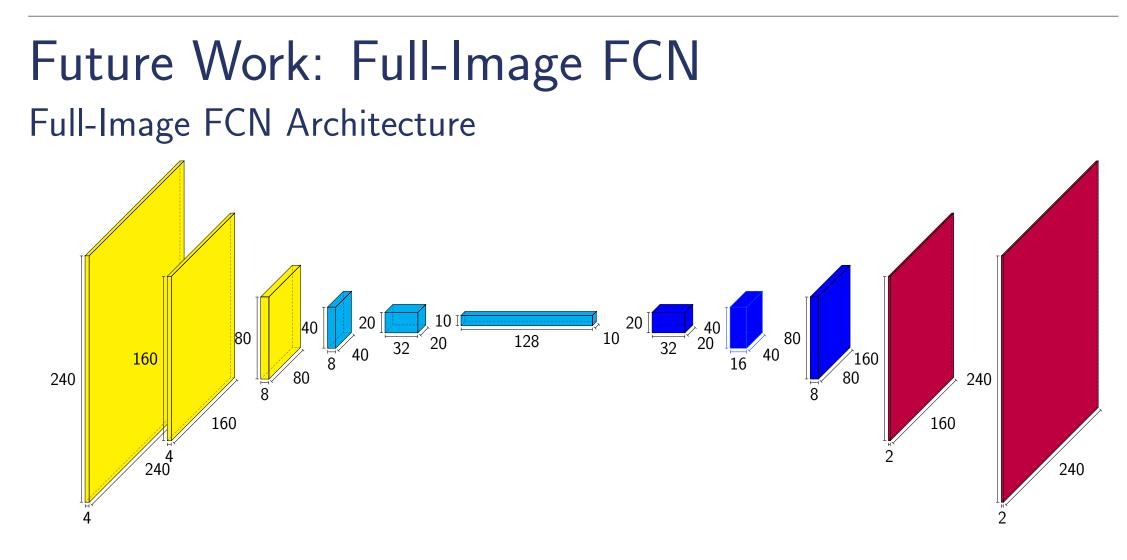


Figure 5: Full-Image FCN Architecture Diagram. Input is full image (single slice shown). Convolutional layers (cyan) followed by ReLU activation and 2×2 max pooling. Deconvolutional layers followed by ReLU and batch normalization. Output (red) contains class scores for background and four tumor regions. Primary advantage of full-image FCN is significant speedup in throughput.

Preliminary Results

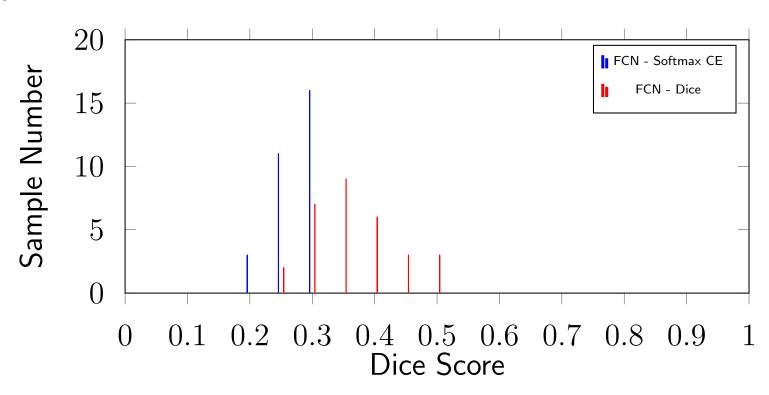


Figure 6: Histogram of dice scores for validation set samples. We tested using both cross-entropy loss and dice score loss. The Dice score loss model performs better, but the scores are poor compared to the voxel-wise architectures. This is most likely due to the model biasing very heavily towards the background class.

Conclusion

- Voxel-wise approach obtains consistently high accuracy (compare with ~ 0.89 dice score on previous BraTS benchmarks)
- Transfer learning accuracy is promising but accuracy inconsistent
- Much work to be done for full-image FCN approach

Acknowledgements

Many thanks to Prof. Olivier Gevaert for his guidance on this project. Also thank you to the CS 231N teaching staff for their tireless support throughout the quarter.

Citations

- [1] E. C. Holland. Progenitor cells and glioma formation. *Current Opinion in Neurology*, 14(6):683–688, 2001.
- [2] B. H. Menze et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). *IEEE Transactions on* Medical Imaging, 34(10):1993–2024, 2015.
- [3] L. Scarpace, A. E. Flanders, R. Jain, T. Mikkelsen, and D. W. Andrews. Data from rembrandt, 2015.
- [4] K. Urbanska, J. Sokolowska, M. Szmidt, and P. Sysa. Glioblastoma multiforme An overview. Wspolczesna Onkologia, 18(5):307–312, 2014.