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• Magnetic resonance imaging (MRI) scan times are relatively
slow, especially for dynamic acquisitions like in the heart

• Scan time can be accelerated by compressed sensing1 (CS)
schemes that exploit data redundancy to reconstruct
undersampled MR images

• However, CS-based reconstruction times are long because
they employ iterative algorithms to solve optimization problems

• Critical time between patient exam and diagnosis is extended
by hours – making MRI infeasible for urgent clinical situations

Goal: Use convolutional neural networks to efficiently and 
accurately reconstruct highly undersampled dynamic MRI data

Background
• CS-based image reconstruction1 is based

on iteratively solving non-linear inverse
problems of the form:

• CNNs are well-suited for modelling this
task2 and have previously been used to
learn CT3 and MRI4 static CS recon
pipelines
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Modified U-net5 architecture:

Methodology

• Each dataset is expanded into N=896 (2D+time) examples
• Each example has 20 time frames (50 ms temporal resolution)
• Datasets are not fully sampled, but are diagnostic quality
• Acquisition time: ~15 min, CS reconstruction time: ~2 hours

4-D cardiac MRI datasets:

Deep Reconstruction Workflow:

• Still many questions: Similar performance for dynamic data?
Best loss function to train on? Upper limit for undersampling?
How to evaluate CNN reconstructions?

(Courtesy of Dr. Shreyas Vasanawala)

Ntrain = 2688
Nval = 896
Ntest = 896

PSNR (dB) SSIM Speed
CS (Truth) - - 2hr19 m
Naive 57.792 0.629 3s
CNN-L2 62.976 0.734 57s
CNN-L1(F) 62.923 0.743 53s
CNN-SSIM 62.526 0.720 200s

Experiment #2: Does loss function impact image quality?

Figure from Lustig et al.1
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• We present a CNN model that can reconstruct dynamic MR
images comparable to standard techniques in under one
minute (150x faster than CS)

• Potential to also accelerate scan time (2x faster than standard)
• Not able to resolve temporal dynamics well – look to RNNs?
• CNNs provide faster scan and recon times – potential to make

MRI cheaper and more feasible in urgent clinical situations

Performance Statistics:

• L1 / L2 similar
performance

• SSIM better at
preserving
structure and
edges

Experiment #1: Can CNN reconstruct undersampled data better than CS? 
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Results

PSNR=56.7 dB

PSNR=62.4 dB

PSNR=51.0 dB

PSNR=57.3 dB

• Used L2 loss
• Ground truth is 

diagnostic quality CS 
recon 

• CNN outperforms 
Naïve recon by ~6 
dB


