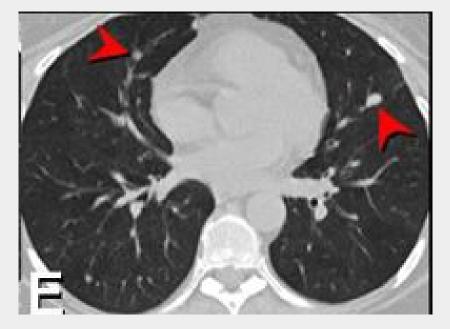


Problem Background

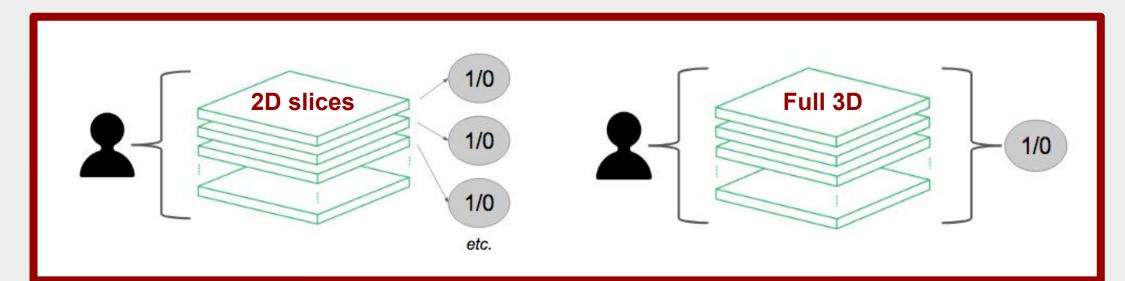
- Lung cancer is one of the most common forms of cancer in the U.S.
 - Responsible for many **deaths** and significant **health care costs**
- Low-dose CT (computed tomography) scans are used by human radiologists to assess a patient's risk of lung cancer
 - **Radiologist's goal:** identify small "nodules" (tissue growths) in the lungs that often precede cancer
 - Challenge: nodules are small and difficult to classify, leading to **high** false positive rates
- **Our goal:** use image recognition techniques to better **predict cancer development** from CT scan data

Data Overview

- Our primary dataset consists of 3-dimensional CT images from ~1600 patients at high risk of lung cancer
- Each patient's data contains between **100** and 500 axial (top-down) grayscale "slices" of the lungs
- Data labels: "1" if cancer diagnosed within the next year, "0" otherwise



Modeling & Prediction Approaches



2-dimensional model

- At training time: Considers each slice each independently, trains on overall patient label
- At test time: Classifies slices independently, then predicts label using threshold over slices
- Architecture: 1-3 2D conv layers (+ pooling/batch norm), 2 FC layers, softmax loss
- **Pros:** training speed; uniformity over input dimensions (512x512)
- **Cons:** "label spraying"; loss of 3D structure

Experimentation & tuning

We explored a range of **architectures** (layer counts, conv filter sizes, etc.) and hyperparameter values (slice count thresholds, learning rate, etc.) to try to optimize model performance.

Predicting Lung Cancer Incidence from CT Imagery

CS 231N Final Project | Spring 2017

TA: Zhao (Joe) Chen

Data preparation

As with many medical imaging assets, our dataset required substantial **preprocessing** to prepare it for model training / prediction. Key steps:

• **Extracting** metadata & pixels from DICOM files to numpy format • **Rescaling** pixel data into "Hounsman units" (standard for CT) • **Compressing / sorting / saving** extracted data for quick loading

Convolutional models

We initially developed two convolutional models for cancer prediction:

3-dimensional model

- At training / test time: Considers 3D pixel matrix for each patient, and trains/evaluates on patient label
- Architecture: 2-5 3D conv layers (+ pooling/batch norm), 1-3 FC layers, softmax loss
- **Pros:** preserves 3D spatial relationships & integrity of patient label
- **Cons:** variable depths require padding/truncation; training slow and memory-constrained

Our experiments show that 2D & 3D convolutional models have **not been able to learn much** on the raw pixel data.

True distribution

	Train	Test
Cancer	25.90%	28.80%
Not cancer	74.10%	71.20%

Best 2D model 80.0% accuracy (patient) with threshold = 0.004

Best 3D model 73.5% accuracy (patient)

Follow-up Investigations

To improve our lung cancer prediction accuracy, we have identified another dataset (LUNA 2016) that contains more detailed annotations of lung nodules.

Work in progress:

- Prepare and augment training nodules or other tissue
- Implement new model nodule classification

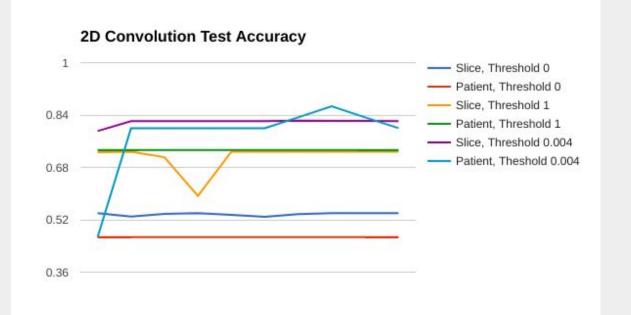
Darren Baker Ali Chaudhry Jen Kilpatrick

{drbaker, alikc, jdki} @stanford.edu

Results

• Classification accuracy is only **slightly (2-8%) above the "naive" value** of predicting the majority class. • 3D conv accuracy is somewhat worse than 2D -perhaps due to padding/truncation. • Model training behavior is volatile -- frequently

jumps to predicting same label for all datapoints!



Hypothesis: nodules are small, rare, and indistinct; need better signal-to-noise ratio!

data for 3D image patches around architecture for "sliding window"

