

Automatic Neuronal Cell Classification in Calcium Imaging with

Convolutional Neural Networks

Seung Je Woo Department of Electrical Engineering, Stanford University

Introduction

- Automated cell extraction methods, such as PCA/ICA and CNMF, have been introduced to sort the cells and widely used.
- However, each candidate needs manual check, as the it may contain noise, false positive, etc.
- Most attempts on the classification with neural networks focused only on the shape of cell candidates as their inputs.

Problem Statement

- Use PCA/ICA processed data, which are the shapes (ROI) and intensity change overtime (trace), for the inputs of classification.
- We introduce Cell Classification ConvNet (3CNet) for the classification and verify the feasibility.
- Compare the classification results on cell candidates with the human-labeled results to evaluate the accuracy.

Figure 1. Cell Classification Problem

Dataset

- PCA/ICA processed dataset of cell candidates from one-photon calcium imaging on prefrontal cortices of two mice.
- Measures of ROIs and traces are not uniform.
- While most ROIs have pixel sizes around 90x90, some ROIs have small sizes (Table 1).

	Mouse 1	Mouse 2	Total		
Number of Sets	6	10	16		
Number of Samples	7284	16142	23426		
Minimum ROI size	5 X 10	5 X 3	5 X 3		
Maximum ROI size	90 X 85	89 X 91	89 X 91		
Minimum Trace Size	11878	12696	11878		
Maximum Trace Size	19414	25810	25810		
Cell to Not Cell Ratio	1:1.55	1:2.27	1:2.00		

Table 1. Dataset statistics

Methods

- Preprocessing images in the dataset: each ROI was extracted and then zero-centered.
- The ROIs and traces were inputted to 3CNet.
- Human-labeled results were used as truths.
- We constructed 3CNet shown Figure 2.
- General 3 FC and 2 CNN layers were used to compare the accuracy.

Conv – 16 3X3 filters	₽	Conv – 32 3X3 filters
ReLU		ReLU
BatchNorm		BatchNorm
Conv – 16 3X3 filters		MaxPool – 2X2, stride 2
ReLU		Conv – 64 3x3 filters
BatchNorm		ReLU
MaxPool – 2X2, stride 2		BatchNorm
Conv – 32 3X3 filters		MaxPool- 2X2, stride 2
ReLU		FC - 5184
BatchNorm		FC - 2

Figure 2. 3CNet Architecture

Experimental Evaluation and Findings

- 85.0% accuracy for 3CNet (Table 2).
- Compared to simple 2 fully connected layers and CNNs, 3CNet is more accurate than others.
- Information truncated during preprocessing may affect 3CNet to predict incorrectly (Figure 3).

	3 FCs	2 CNNs	3CNet
Accuracy (%)	74.2	75.6	85.0
Memory (bytes)	272k	10.4M	9.36M
Parameters	289M	922k	27.3M

Table 2. Result summary

Figure 3. Possible case of wrong prediction

Discussions

- Uncertainties in human labeling.
- Further improvements on 3CNet.
- Try 3CNet on other dataset from different brain areas, such as cerebral cortex.

Acknowledgements

This project was supported by Samsung Scholarship and Schnitzer Lab. We thank Joe Chen and Biafra Ahanonu for helpful discussions and Tony Kim for providing us the dataset with labels.