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Preprocessing (Segmentation)
• CT scan slices and corresponding histogram of radiodensities 

(Hounsfield Units) are shown below:

• We perform segmentation by thresholding

• <--1000 HU: air (masked out)

• >400 HU: Bone segment (masked out, left image)

• -1000 to 400 HU: Lung Tissue + air within lung (middle 

image), to produce final mask (right image)

Background & Problem Statement
• Over 200,000 people are diagnosed with lung cancer every year.
• Lung cancer is the leading cause of death among all cancers.

• Early detection is important for improved survival but early stage 
cancer nodules are small and hard to detect

• Our task is a binary classification problem to detect the presence 
of early stage lung cancer from patient CT scans.

• Dataset: Kaggle Data Science Bowl 2017 (70% labels are 0)
• Evaluation: Accuracy, Sensitivity, Specificity, AUC

Baseline Models
• Linear Classifier and 2D 

CNN (architecture 
described at the right)

• Raw Pixels and HOG as 
feature representations

Preliminary Results

Conclusions/Future Work

Advanced Models

• Current performance not great but models have 
not finished training.

• Use a more advanced segmentation algorithm 
(Watershed)

• Increase Regularization or Model Complexity???

• Analyze saliency maps for better tumor 
detection

• Use ensemble models to achieve better  
performance

• Transfer learning or residual nets

Evaluation: Area under ROC
SUNet AUC: 0.563
GoogleNet AUC: 0.528
Results slightly better than 
random guessing, but hold 
your horses! We are still 
training...

1. Convolution layer with 128 filters of 
size (3,3), strides (1, 1) and zero-padding
2. Batch normalization layer
3. 2D max normalization layer with pool 
size (2, 2) and strides of length 2
4. ReLu activation layer
5. Convolution layer with 128 filters of 
size (3,3), strides (1, 1) and zero-padding

6. Batch normalization layer
7. 2D max normalization layer with 
pool size (2, 2) and strides of length 
2
8. ReLu activation layer
9. Fully connected layer of size 256
10. ReLu activation layer
11. Fully connected readout layer of 
size 2

slice 4               slice 8                    slice 16               slice 20                   slice 24               slice 28    

Advanced Models (cont.)

SUNet:
~19M parameters, maxpool after each conv layer

• Both Models:
• Activation: Leaky ReLU
• Loss: Softmax Cross Entropy
• Gradient Descent Algorithm: Adam
• Regularization: L2, dropout (P

drop
 = 0.2) after each 

conv3D and before final readout layer (P
drop

 = 0.5) 

Modified  GoogLeNet:

~ 23M parameters

Inception Module


