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Background & Problem Statement Baseline Models Advanced Models (cont.)

= Over 200,000 people are diagnosed with lung cancer every year. ¢ Linear Classifier and 2D 1, Convolaon orvin 128 ers o {6 Betchrormatzaon aver * Both Models:
* Lung cancer is the leading cause of death among all cancers. CNN (architecture 520 manromalzaton over witpool |50 2 e flendh + Activation: Leaky ReLU
Non: Small Cell Lung Cancer Survival Rate N ) size (2, 2) and strides of length 2 8. ReLu activation layer
oo described at the right) PSSP Mt fie st * Loss: Softmax Cross Entropy
. size (3,3), strides (1, 1) and zero-padding | 11. Fully connected readout layer of ) i
* Raw Pixels and HOG as sze2 * Gradient Descent Algorithm: Adam
feature representations . Regularlzatlon L2, dropout (Pdro =0.2) after each
51 15 Model Accuracy Sensitivity Specificity
£ Train / Val Train / Val Train / Val
Linear+pixels 0.89570.663 | 0.956/0.520 | 0.869/0.710 Prellmlnary Results
Linear+HOG 0.957/0.584 | 0.989/0.400 | 0.944 /0.644

2D-CNN-+pixels 0.526/0.436 | 0.989/0.720 | 0.332/0.342
* Early detection is important for improved survival but early stage 2D-CNN+HOG_|| 0.707/0.752 | 0.08970.080 | 0.967/0.974
cancer nodules are small and hard to detect
o i Advanced Models
* Our task is a binary classification problem to detect the presence
of early stage Iung cancer from patlent CT scans. SUNet:
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* CT scan slices and corresponding histogram of radiodensities oy ﬁ-‘ probabiliies Evaluation: Area under ROC
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~ 23M parameters

x1xt  Current performance not great but models have
* We perform segmentation by thresholding ety g not finished training.
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