

Deep Convolutional Neural Networks for Lung Cancer Detection

Niranjan Balachandar, Peter Lu, Albert Chon

Background & Problem Statement

• Over 200,000 people are diagnosed with lung cancer every year.

- Early detection is important for improved survival but early stage cancer nodules are small and hard to detect
- Our task is a binary classification problem to detect the presence of early stage lung cancer from patient CT scans.

Dataset: Kaggle Data Science Bowl 2017 (70% labels are 0) Evaluation: Acturacy, Schiltevity, Specificity, Auen

CT scan slices and corresponding histogram of radiodensities
(Hounsfield Units) are shown below:

- We perform segmentation by thresholding
 - <--1000 HU: air (masked out)
 - >400 HU: Bone segment (masked out, left image)

Baseline Models

. Convolution layer with 128 filters of

 2D max normalization layer with poo ize (2, 2) and strides of length 2

. Convolution layer with 128 filters of

e (3.3) strides (1.1) and zero-nad

ize (3,3), strides (1, 1) and zero-pad

Batch normalization laver

Rel u activation laver

Batch normalization lave

Rel µ activation lave

ize 2

. ReLu activation layer

2D max normalization layer with

ool size (2, 2) and strides of length

Fully connected layer of size 256

I. Fully connected readout layer

- Linear Classifier and 2D CNN (architecture described at the right)
- Raw Pixels and HOG as feature representations

Model	Accuracy	Sensitivity	Specificity
	Train / Val	Train / Val	Train / Val
Linear+pixels	0.895 / 0.663	0.956 / 0.520	0.869 / 0.710
Linear+HOG	0.957 / 0.584	0.989 / 0.400	0.944 / 0.644
2D-CNN+pixels	0.526/0.436	0.989 / 0.720	0.332 / 0.342
2D-CNN+HOG	0.707 / 0.752	0.089 / 0.080	0.967 / 0.974

Advanced Models

SUNet:

~19M parameters, maxpool after each conv layer

Advanced Models (cont.)

Both Models:

0.8

€0.6

0.2

0

- Activation: Leaky ReLU
- Loss: Softmax Cross Entropy
- Gradient Descent Algorithm: Adam
- Regularization: L2, dropout (P_{drop} = 0.2) after each copy2D and before final readout layer (P = 0.5)

Preliminary Results

Evaluation: Area under ROC SUNet AUC: 0.563 GoogleNet AUC: 0.528 Results slightly better than random guessing, but hold your horses! We are still training...

Conclusions/Future Work

- Current performance not great but models have not finished training.
- Use a more advanced segmentation algorithm (Watershed)
- Increase Regularization or Model Complexi NOTSURE
- Analyze saliency maps for better tumor detection
- Use ensemble models to achieve better performance

