Histological Image Segmentation: Cancer vs Stroma Adam Abdulhamid

Overview

- Deep Learning, especially in the field of vision, has huge implications in the medical imaging domain.
- Goal: learn a model that outputs a pixel-wise classification of either cancer cell, stroma, or neither.
- The last 5 years have shown an incredible increase in convolutional networks ability on all vision tasks. I wanted to apply CNNs to a dataset hand generated by several doctors in the Stanford Medical School.

Problem Statement

- My model begins with the first 4 layers of VGG16 and adds on several more convolutional, transpose convolutional, and batch normalization layers in attempt to fine tune to this specific task.
- Evaluation of our model's performance is based on softmax cross entropy loss at each pixel, and is averaged over all pixels to give one loss value.

- Consists of ~200 histological images of real breast cancer tumors, and the corresponding high quality labels generated by doctors at Stanford Medical School.
- Although small, each image is 1128x720 which provides roughly ~800k classifications per image.
- Augmented data set with flipped and mirrored images.

Stanford University

Network Architecture

Model 1	Model 2
3x3 Conv, 3	3x3 Conv, 3
3x3 Conv, 32	5x5 Conv, 32
9x9 Conv, 48	7x7 Conv, 48
11x11 Conv, 64	9x9 Conv, 64
2x2 Conv_T, 128	2x2 Conv_T, 128
VGG Layers	VGG Layers

3x3 Conv, 3
3x3 Conv, 32
3x3 Conv, 64
3x3 Conv, 128
3x3 Conv, 128
3x3 Conv, 256
3x3 Conv, 256
2x2 Conv_T, 128
VGG Layers

Model 3

Final Model

3x3 Conv, 3 3x3 Conv, 32 3x3 Conv, 64 2x2 Conv, 128 3x3 Conv, 256 2x2 Conv T, 256 3x3 Conv, 256 VGG Layers

- All Conv layers use ReLu nonlinearity
- 2x2 Conv_T layer increases spatial resolution by 2x
- Model 3 introduces batch norm before every non-linearity
- Final model added 3 more layers taken from VGG
- All images end with same dimensions as inputs

Model Performance

Experimental Findings

Histological Image Segmentation

Validation Loss: 0.697 Training Set Loss: 0.563 **Test Set Loss: 0.685**

Conclusion

- than I would have liked.
- convolution.

- resources.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks for Semantic Segmentation. CoRR abs/1605.06211 CVPR 2016.

Hyeonwoo Noh, Seunghoon Hong, Bohyung Han. Learning Deconvolution Network for Semantic Segmentation. CoRR abs/1505.04366 CVPR 2016.

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2016.

Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556, ICLR 2017.

,		

Model	Validation Loss
Random	1.098
Model 1	0.849
Model 2	0.774
Model 3	0.748
Tuned Final Model	0.697

• Overall, good results were achieved, but with more noise

• Clearly there is good signal here, which implies visual similarities across many different breast cancer tumors. Better performance was achieved when adding more complicated layers like batch norm and transpose

Future Work

• One big issue is lack of data. With a few hundred more examples there would be more signal. Experiment more with taking further layers of VGG and upsampling/downsampling. Do a more comprehensive hyper-parameter search given more time and computational

• Take this to the doctors to see what they think!

References

June 2017