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INTRODUCTION RESULTS

« Diabetic retinopathy (DR) is a common eye
disease which affects one in three Americans
with diabetes.

DR can progress to irreversible vision loss

without early diagnosis.

* While binary classification of DR has achieved
high accuracy , multinomial classification
assessment has challenging, particularly for
early stages of disease.

PURPOSE

Develop a DR grading system capable of
classifying fundus images based on
location, number and type of retinal lesion.
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Binary Class Training

* Binary models (AlexNet, VGG16, and GooglLeNet) were
trained and tested on the Kaggle and MMDR dataset

* GoogLeNet was the highest performing CNN.
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Before and after histogram normalization

Visualization

Feature importance
heatmap from the sliding
window method.
Red = probable disease.
Green = neutral; Clear
blue = normal.
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CONCLUSIONS

* Histogram equalization enhances sensitivity of the
classifier for mild cases of DR.

* GoogLeNet CNN as a binary classifier achieves 95%
recall, while 3-ary classifier achieves 75% overall recall

* Future steps to improve sensitivity in mild grades
Involve: boosting, segmentation, and localization steps.
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