Automated Detection of Diabetic Retinopathy using Deep Learning Carson Lam, Margaret Guo, Tony Lindsey

INTRODUCTION

- **Diabetic retinopathy (DR)** is a common eye disease which affects <u>one in three Americans</u> with diabetes.
- DR can progress to irreversible vision loss without early diagnosis.
- While binary classification of DR has achieved high accuracy, multinomial classification assessment has challenging, particularly for early stages of disease.

PURPOSE

Develop a DR grading system capable of classifying fundus images based on location, number and type of retinal lesion.

Preprocessing

Real-time rotation, flips, and translation to augment data

Binary Class Training

- (23%)

CS 231N, Spring 2017 Stanford University, Palo Alto, CA

RESULTS

Severe

Binary models (AlexNet, VGG16, and GoogLeNet) were trained and tested on the Kaggle and MMDR dataset GoogLeNet was the highest performing CNN.

Visualization

Feature importance heatmap from the sliding window method. Red = probable disease. Green = neutral; Clear blue = normal.

Multi Class Training

CONCLUSIONS

- Histogram equalization enhances sensitivity of the classifier for mild cases of DR.
- Future steps to improve sensitivity in mild grades

Acknowledgments Darvin Yi and Daniel Rubin Rishi Bedi and CS231N staff

- 1;57(13):5200-6.
- Image Anal. 2012;16(1):216-26.
- Fundus Photographs. JAMA. 2016;316(22):2402-2410.
- of the IEEE conference on computer vision and pattern recognition, pages 1717-1724, 2014.
- 5. 2155, 2013.
- programme. In British Journal of Ophthalmology, pages 1512–1517, 2007.
- Vision and Pattern Recognition, pages 2818–2826, 2016.

On MMDR dataset 75% overall sensitivity 74% overall PPV Kappa = 0.536

• GoogLeNet CNN as a binary classifier achieves 95% recall, while 3-ary classifier achieves 75% overall recall involve: boosting, segmentation, and localization steps.

References

Abràmoff, et al. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep LearningDeep Learning Detection of Diabetic Retinopathy. Investigative Ophthalmology & Visual Science. 2016 Oct

2. Giancardo L, et al. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal

Oquab, et. al. Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings Mookiah, et al. Computer-aided diagnosis of diabetic retinopathy: A review. In Computers in Biology and Medicine, pg 2136-

6. Philip, et. al. The efficacy of automated disease/no disease grading for diabetic retinopathy in a systematic screening 7. Szegedy, et al. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer