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Brain	Tumor	Segmentation
Bora	Erden,	Noah	Gamboa,	and	Sam	Wood

HYPERPARAMETERS
We	set	out	to	build	a	convolutional	neural	network	to	classify	tumors	and	tumor	
subsections	in	MRI	brain	images.	Medical	image	analysis	is	a	very	important	field,	and	
we	believe	that	computer	algorithms	have	the	potential	to	reproduce	or	even	
improve	upon	the	accuracy	of	human	experts.	Using	algorithms	to	automate	medical	
image	analysis	could	save	time	and	money	for	hospitals	and	patients,	and	improved	
accuracy	would	be	a	great	benefit	to	cancer	patients.

PROBLEM	STATEMENT
Given	an	input	of	an	MRI	brain	volume,	our	neural	network	outputs	a	semantic	
segmentation	of	the	volume	that	separates	the	tumor	from	the	rest	of	the	brain.	We	
produce	this	segmentation	using	a	deep	down-sampling-up-sampling	network	of	3D	
convolutions.	We	evaluate	the	segmentation	produced	by	our	network	using	the	DICE	
coefficient	between	the	predicted	segmentation	and	the	ground-truth	label.	The	Dice	
coefficient	between	two	sets	X and	Y is	calculated	as:	
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Our	dataset	consists	of	around	500	brain	volumes,	each	consisting	of	155	two-
dimensional	slices.	Every	brain	volume	in	the	dataset	contains	a	glioma,	a	common	
type	of	brain	tumor.	The	brain	volumes	are	clinically-acquired	MRI	scans,	labelled	
manually	by	neuro-radiologists.	In	addition	to	demarcating	the	tumor,	the	labels	
divide	the	tumor	into	four	subsections:	edema,	non-enhancing	core,	necrotic	core,	
and	enhancing	core.	The	dataset	was	provided	by	the	2017	BraTS Multimodal	Brain	
Tumor	Segmentation	Challenge.	An	example	brain	slice	and	associated	label	is	shown	
below.

As	predicted,	optimizing	against	the	Dice	coefficient	objective	best	allows	us	to	
maximize	the	Dice	coefficients	for	our	model’s	predictions.
We	found	that	a	3D-convolutional	architecture	significantly	outperformed	our	2D-
architectures,	even	when	the	2D	nets	were	significantly	wider	and	deeper.
Moving	forward,	we	plan	to	investigate	res-net	style	architectural	choices	that	would	
allow	us	to	achieve	increased	accuracy	using	our	3D	model,	despite	the	width	
limitations	we	face	as	a	result	of	the	memory	demands	of	3D	convolutions.	For	
example,	some	papers	have	suggested	concatenating	the	outputs	of	earlier	down-
sampling	convolutions	to	the	outputs	of	later	up-sampling	convolutions.	We	will	
investigate	the	effect	of	this	strategy	on	the	success	of	our	model.
We	also	plan	to	take	advantage	of	the	subsection	segmentation	data,	perhaps	using	a	
vote	among	an	ensemble	of	models	for	multiclass	segmentation.

BACKGROUND
We	use	a	fully	convolutional	neural	network.	After	running	the	input	brain	volume	
through	a	series	of	down-sampling	max-pooling	convolutional	layers,	we	feed	the	
data	through	a	series	of	up-sampling	transpose	convolutional	layers	(See	Fig.	2).	The	
final	output	of	the	network	is	the	same	shape	as	the	input,	but	each	“pixel”	of	the	
output,	rather	than	containing	visual	information,	contains	the	unscaled	probability	
that	the	corresponding	pixel	in	the	input	belongs	to	the	tumor.

We	experimented	with	both	two-dimensional	and	three-dimensional	convolutional	
architectures.	Since	the	inputs	to	our	network	are	two-dimensional	brain	slices	that	
make	up	connected	three-dimensional	volumes,	we	assumed	that	three-dimensional	
convolutions	should	be	able	to	achieve	better	results.	However,	the	memory	
demands	of	three-dimensional	convolutions	forced	us	to	train	on	smaller	batches	and	
sacrifice	some	width	and	depth	from	our	network.
While	we	assumed	that	using	the	Dice	coefficient	directly	as	our	objective	would	give	
the	best	results,	we	also	experimented	with	optimizing	against	cross-entropy	loss	and	
against	sensitivity-specificity	loss	(which	weights	sensitivity,	the	percentage	of	
correctly-identified	tumor	pixels,	much	more	highly	than	specificity,	the	percentage	
of	correctly-identified	non-tumor	pixels,	in	an	attempt	to	compensate	for	the	scarcity	
of	tumor	pixels).

Figure	1:	An	example	slice	from	a	brain	volume,	at	
left,	with	its	ground-truth	tumor	segmentation. Figure	3:	As	expected,	using	the	Dice	coefficient	as	the	

objective	yielded	the	best	results.
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Figure	4:	A		dropout	rate	of	0.5	and	high	learning	rate	of	1e-4	
led	to	the	best	validation	set	dice	coefficient	after	one	epoch	

of	training

Figure	2:	While	this	does	not	represent	the	exact	
architecture	of	our	model,	it	demonstrates	the	principles	of	

a	down-sampling-up-sampling	convolutional	network.
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Figure	5:	We	compared	a	3D	net	to	various	2D	architectures.	The	3D	net	
significantly	outperformed	the	2D	nets,	even	though	it	had	access	to	far	

fewer	trainable	parameters,	due	to	memory	constraints.


