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Background
• Prostate	cancer	is	the	second	leading	cause	of	cancer	death	among	

American	men.	Early	detection	of	prostate	cancer	usually	comes	with	
a	17	- 50%	overdiagnosis of	the	cancer	leading	to	discouragement	in	
using	treatment.	

• Multi-parametric	MR	is	a	powerful	imaging	technique	used	in	
detecting	the	prostate	cancer.	However,	analysis	is	plagued	by	inter-
radiologist	variability.	To	improve	the	analysis	of	MR	imaging,	
conventional	machine	learning	techniques	are	used	to	reduce	the	
overdiagnosis.

• We	propose	a	convolutional	neural	networks	(CNNs)	model	to	improve	
the	performance	of	of	automated	multi-parametric	MR	image	analysis	
of	prostate	cancer	to	classify	an	aggressive	type	and		benign	type.	

Dataset

Approach

• The	data	set	consists	of	197	patients	multi-parametric	MR	images	
obtained	from	the	Radiology	Department,	Stanford	Medical	School.	

• 138	patients	are	diagnosed	with	aggressive	prostate	cancer	and	59	
patients	are	diagnosed	with	benign	prostate	cancer.			

• All	the	images	were	acquired	in	the	axial	plane,	and	an	expert	
radiologist	identified	and	circumscribed	the	suspicious	lesion.	

• Each	MRI	includes	3	image	modularities:

1. Apparent	Diffusion	Coefficient	(ADC)
2. Diffusion	Weight	Imaging	(DWI)
3. T2	Weighted	Image	(T2)
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Model	evaluated	on	2	metrics:
• Correctly	classified	image	

accuracy
• ROC	– AUC	curve
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Type Model Accuracy AUC

Individual	Model

Linear	SVM 48	% 0.54
LASSO 52	% 0.53
Elastic	Net 55	% 0.56
Simple	CNN 58	% 0.61
CIFAR-10	
CNN 65	% 0.54

Q-Learning
CNN 67	% 0.52

Ensemble	Model
Simple	CNNs 72 % 0.76
Q-Learning
CNNs 73	% 0.73

State	of the	art
Elastic Net	
with	Custom	
Feature

73 % 0.73

PCA

Benign
Aggressive		

• End-to-end	ensemble	CNNs	achieves	similar	performance	with	the	
state-of-the-art	without	feature	extraction.	

• Extract	visual	features	via	CNN,	then	use	features	to	run	on	other	
algorithms	such	as	boosting	trees.
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Conclusion & Future Works

Ensemble CNNs

• The	full	scans	are	cropped	to	50	x	50	pixels	at	the	radiologist	annotated	point.		

• Due	to	the	small	sample	size,	the	images	are	augmented	using	rotation,	reflection,	
scaling,	Gaussian	noise,	and	Salt	and	Pepper	noise.	

• The	main	idea	is	to	have	many	CNNs	jointly	make	the	decision	by	averaging	the	
result	from	individual	models.

• 20	different	CNNs	are	sampled	with	dropout	probability	in	(0.5,	0.9)	and	the	output	
size	of	the	last	affine-ReLU in	[128,	256,	512].				

Ensemble Q-Learning CNNs
• We	search	for	the	best	CNN	architecture	for	the	problem	with	Q-Learning	agent	that	

learns	to	select	the	layers	to	achieve	high	validation	accuracy.	

• The	models	in	the	ensemble	are	replaced	with	the	top	CNN	architecture	from	the		
Q-learning	agent.			
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