
PDBBind: Regression on -log(Ki/Kd); R
2 Performance

Methodology Train Valid Test
ECFP 0.373 0.361 0.337

ECFP Grid 0.960 0.488 0.471
SPLIF Grid 0.971 0.501 0.497

Interaction Grid 0.915 0.402 0.348
Naive Graph Convolution 0.193 0.196 0.189

Atom Convolution .962 ? 0.562
Brendan Graph Convolution 0.916 0.567 0.503

1

Figure 2. Novel 3D Convolutional architecture consisting of (left) SPLIF hashed input and (right) ligand-protein 
interaction energy both into 1x1x1 Angstrom voxels, creating in total, a 20x20x20 Angstrom input cube.

Brendan: A Deep Convolutional Network for Representing Latent Features
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Abstract
Molecular "�ngerprints" (feature vectors) are often used in computational drug 
discovery to predict Protein-Ligand binding a�nity. However, these �ngerprints 
are based on chemical descriptors that are hand-tailored to match quantum 
mechanical data, making the development and choice of individual �ngerprint 
features extremely di�cult and arbitrary. In this paper, we introduce a deep 
convolutional network, Brendan, that allows us to learn the latent features of 
Protein-Ligand binding poses by training on 13,000 raw crystallographic poses 
from PDBBind. 

Although other approaches have attempted to use deep learning to predict the 
chemical properties of molecules, we are the �rst to (1) accurately predict the 
properties of protein-ligand complexes using a (2) �exible spatial representa-
tion of the complex of interest. We show that these methods can be used for 
downstream applications.

Methodology
A variety of methods were implemented for Brendan and compared to state of 
the art performance (both hand-crafted and learned):

- log(Ki/Kd)

Figure 1. Classical QSAR Approaches use hand-crafted �ngerprint vectors and standard machine learning methods 
(random forests) to predict chemical features

Novel graph convolutional methods were also implemented 
using a GS32-P4-GC64-P4-FC512-FC1 architecture as pro-
posed in De�errard et al. These methods were are compared 
to the Duvenaud et al. graph convolutional method imple-
mented in DeepChem.

Graph convolutions in DeepChem (benchmark) are preformed 
using a naive graph convolution f(H(l), A) = σ(AH(l)W(l)) where A 
is a binary adjacency matrix. Graph convolutions in our 
method use the Chebyshev polynomial approximation to the 
symmetric normalization f(H(l), A) =  σ(D-1/2AD-1/2H(l)W(l)) where 
A is the weighted (real-valued) adjacency matrix as in De�e-
rard et al.  Chebyshev polonomial approximations are shown 
to give a higher validation accuracy on graph datasets than 
non-parameterized graph convolutions. Adjacency weights 
are given by bonded and unbonded energies from the OPLS 
v3 force �eld from Schrodinger.
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Figure 3. Brendan 3D Convolutional architecture usinga ResNet inspired structure.
Crystallographic structures from PDBBind are regressed on binding a�nity.

Figure 4. (Left) Latent features are learned from a ligand-protein graph, given precomputed
atom features and a binary adjacency matrix. (Right) Latent features are learned

from a ligand-protein graph with a real-valued adjacency matrix.

Results

Preliminary results of regression on the full set of PDBBind crystals shows a sig-
ni�cant performance from previous graph convolutional based chemical learn-
ing methods. Although Brendan is slightly beat out by atomistic convolutions, 
the two methods are quite similar and with further re�nement, Brendan should 
be able to at least match the performance of atomistic convolutions.

Conclusion
Brendan represents a new paradigm of a end-to-end di�erentiable deep learn-
ing model for chemical learning. Our preliminary results show that good similar-
ity between ligand-protein interactions can signi�cantly improve the ranking of 
docked poses. With accurate graph based convolutions, we can �nally explore 
models such as triplet networks and GANs to optimize chemical data.

Figure 5. Performance of our novel methods against state of the art benchmarks in DeepChem

Figure 6. Our preliminary results show that �ngerprint based similarity metrics can improve the performance of docking.


