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Lung cancer is the deadliest form of cancer worldwide

(20% of worldwide cancer deaths, 158,080 US deaths

in 2016), and is often misdiagnosed. Promising work has

recently attempted to assist and improve lung cancer

diagnosis and prognosis using deep learning and other

machine learning techniques [1][2]. However, new

techniques are needed to look more holistically at the

input data and improve prediction accuracy.

Quantum annealing promises exponential improvements

for many optimization problems. Recent studies using

Restricted Boltzmann Machines (RBMs) and quantum

annealing for image processing have yielded promising

results[3][4], but no study has yet attempted to apply these

practices to medical imaging.

Model and Results

The long-term goal of this research is to engineer a hybrid 

deep learning/quantum annealing pipeline that will 

facilitate early cancer diagnosis. A schematic of this hybrid

pipeline is shown in Figure 6. Quantum annealing could be 

used in an RBM/DBN context to extract features from 

images, or speed up analysis of extracted features. 

In the short term, a classical feature extractor could be 

used to identify a small number of relevant features, which 

could then be analyzed directly on the D-Wave 

architecture and then compared to classical performance. 
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Figure 1: Key studies related to machine/deep learning applied 

to lung cancer [1][2], QA outperforming classical computation 

[5][7], or QA used in deep learning contexts [3][4]. 

Figure 2: Left: graphical representation of qubit layout on the 

D-Wave chip; middle: D-Wave quantum processing unit; right, 

entire D-Wave machine (exterior visible). 

• D-Wave 2X QPU

• 1135 Qubits

• 15 millikelvin

• Solves quadratic unconstrained binary optimization

by annealing from quantum state to classical state
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Figure 6: Proposed quantum/classical lung cancer imaging 

pipeline to assist doctors in diagnosis and prognosis.
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Figure 3: MNIST

• 60,000 handwritten 

numbers

• Standard dataset

• 28x28 grayscale

• Resized to 6x6 to fit on

D-Wave machine

Figure 4: Cancer 

Dataset

• 144 H&E stained 

tissue sample slides

• Augmented by 

rotation, mirroring

• 500x500 color

Input

Figure 3: Deep Belief Network

architecture. The input layer and hidden 

layers all have 36 nodes, while the output 

layer has 10 nodes.
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