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Pixel-Level Decision Trees 

Fully Convolutional Networks Networks

Deconvolutional Neural Networks (Noh et al.)
• We are unsuccessful in training deconvolutional neural networks. This is likely a 

result of  several factors. First, for the RGB-only task, the VGG-16 ConvNet is 
pretrained on ILSVRC data, which does not parallel Sentinel-2 data. For the 13-
band task, training may simply require more computational resources.

Inference Speed and Accuracy

Problem
Overview
• Goal: identify clouds in satellite images
• Motivation: removing (“masking out”) clouds important 

for downstream analysis for satellite imagery.
• Task: image segmentation with classes including dense 

clouds, cirrus clouds, shadows, water, snow, and land.
• Evaluation: per-pixel classification accuracy, CE loss, 

qualitative analysis of  output, classification speed.
Subtasks:
We consider several permutations of  the problem definition. 
• Given information: image segmentation using all 13 

Sentienl-2 bands, or only using RGB.
• Output classes: we consider 2-class, 3-class, and 6-class 

classification problems, defined as follows.

Data
• 60 Sentinel-2 satellite images ≈ 10,000 by 10,000 px. ea.
• Segmented into ≈ 120,000 tiles of size 224 by 224 px.
• Sentinel-2 images have 13 spectral bands, rather than 3 

(RGB). RGB frequencies range from .665µm to .490µm, 
while S2 bands range from 2.190µm to .443µm, with 
more information (e.g. infrared, short-wave infrared).

• Satellite imagery is very different from “traditional” 
imagery (top- down, spatial covariance, lack of central 
focus, scale), making transfer learning or pretrained 
classifiers less useful.

• Sentinel-2 ships with a proprietary cloud mask (below), 
which provides noisy but useful training data.

Baseline	Methods
Previous Approaches:
• Previous approaches are decision trees and linear classifiers, emphasizing speed.
Pixel-Level Decision Tree
• A recreation of  previous research by Hollstein et al.
• Extremely fast, but innacurate for problems 

more advanced than the binary problem.
• Useful for a form of  transfer learning: 

we generate training data for CNN’s 
by applying decision trees, using the Sentinel-2 cloud mask as an extremely noisy label.

Pixel-Level MLP
• An expansion on the pixel-level classification using decision trees. Ultimately no more 

accurate than decision trees, likely due to the same inability to take advantage of  spatial 
covariance, with significantly increased inference time.

Results

Methods
Fully Convolutional Networks Networks (Long et al.)
• A modification of  the Alexnet (Krizhevsky et al)
• architecture which removes the fully connected layers in favor of  fully convolutional 

layers, and adds a singular deconvolution. (Below are architecture, loss, and accuracy)

Deconvolutional Neural Networks (Noh et al.)
• Parallel convolutional and deconvolutional structure.
• Convolutional first half  initialized using ILSVRC-pretrained VGG-16

Discussion	and	Future	Work

2 Classes CLOUD, CLEAR

3 Classes DENSE, CIRRUS, CLEAR

6 Classes DENSE, CIRRUS, SHADOW, WATER, SNOW, CLEAR

• Pixel-level decision trees achieve visually satisfactory results and high numerical 
accuracy for the binary problem, but fail on more difficult classes, such as shadows.

• Fully convolutional neural networks produce coarse output, but could be refined by 
using a series of  deconvolutional layers – likely the most viable next step.

• Deconvolutional networks have strong potential for this task, but can’t be pretrained 
on ILSVRC data, which is significantly different from satellite imagery. Future work 
might include training a DNN end-to-end on Sentinel-2 data.

• Satellite images are extremely large; processing time is key. Future work might include 
application of  SqueezeNet (Iandola et al.) architectures to Sentinel-2.

Inference Accuracy (F1 Score) Inference Speed

Decision Trees 0.653 16 million pixels/second

Fully Conv. Networks 0.822 1 million pixels/second

Deconv. Networks 0.516 40,000 pixels/second

X[1] <= 0.2885
gini = 0.7897

samples = 1962448
value = [660494, 258001, 100570, 326460, 311649, 305274]

class = Clear

X[9] <= 0.0199
gini = 0.6669

samples = 1335689
value = [658194, 256390, 99605, 290570, 30122, 808]

class = Clear

True

X[11] <= 0.2445
gini = 0.559

samples = 626759
value = [2300, 1611, 965, 35890, 281527, 304466]

class = Water

False

X[7] <= 0.0406
gini = 0.3135

samples = 312189
value = [4809, 253385, 51754, 2240, 1, 0]

class = Cloud

X[10] <= 0.0047
gini = 0.51

samples = 1023500
value = [653385, 3005, 47851, 288330, 30121, 808]

class = Clear

gini = 0.1166
samples = 244851

value = [31, 229747, 13325, 1748, 0, 0]
class = Cloud

gini = 0.546
samples = 67338

value = [4778, 23638, 38429, 492, 1, 0]
class = Shadow

gini = 0.2543
samples = 692971

value = [595574, 3005, 47525, 17325, 28921, 621]
class = Clear

gini = 0.2971
samples = 330529

value = [57811, 0, 326, 271005, 1200, 187]
class = Snow

X[2] <= 0.5559
gini = 0.1295

samples = 319353
value = [678, 1611, 965, 13435, 5067, 297597]

class = Water

X[11] <= 0.3456
gini = 0.1853

samples = 307406
value = [1622, 0, 0, 22455, 276460, 6869]

class = Cirrus

gini = 0.6889
samples = 30041

value = [595, 1611, 965, 13016, 4528, 9326]
class = Snow

gini = 0.0072
samples = 289312

value = [83, 0, 0, 419, 539, 288271]
class = Water

gini = 0.6254
samples = 41290

value = [232, 0, 0, 18104, 16348, 6606]
class = Snow

gini = 0.0443
samples = 266116

value = [1390, 0, 0, 4351, 260112, 263]
class = Cirrus


