Discovering Scenic Roads Using Neural Networks

Bogdan State

Abstract Results
Convolutional Neural Networks (CNNs) coupled with novel large image
datasets offer ample hope for building a computational understanding of the
relationship between humans and environment. CNNs are also particularly
effective at learning complex sets of rules, such as the ones governing
aesthetics. Here | present one potential application of computational
aesthetics to the detection of scenic byways. To do so | use a dataset of
Google Streetview images collected alongside California State Highways,
with labels derived from the California Department of Transportation official
“scenic byway” designation. A CNN is trained on a dataset of order-10°
Streetview images, achieving moderate accuracy against a validation set.
With suitable refinement the approach shows promise in quantifying the
degree to which roadways are aesthetically pleasing, a measure with
potential applications in tourism, transportation, and urban planning.

) Figure: Least and Most Scenic Images

Motivation
@ Aesthetics of locations important consideration for planning, land use. o Accuracy hovers at 60%.
@ Internet data showing great potential for fine-grained understandings of @ Problem: not all streetview pictures on scenic roads truly scenic.
human-environment interaction. [5, 4] @ Out-of-sample predictions: county-maintained roads in Santa Cruz
@ Deep learning using Streetview imagery [1]| and satellite data [3] = 6, 2 County.
potential revolution in understanding the spatial dimension of social

@ Reasonable results, but note issue with highway 1 (few trees, ocean

data. scenic too).

@ Computational aesthetics of natural landscapes under-researched,
despite evidence of important psychological impacts.[8]
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@ Labels: eligible scenic routes
according to CA DoT wvs. all
state highways.

@ Images: balanced sample of
Google Streetview images from

Figure: Scenic (red) and non-scenic scenic, non-scenic roads.
(black) sample points.
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Methods

Deep convolutional neural network to predict scenicness given image pixels:
@ 3x3 conv. layer, depth 10, stride 1.
@ Leaky Relu activation layer (p=0.01).

=5

@ 2d batch normalization layer. [2] "

@ 2d max-pooling layer, kernel size 7 and stride 2.

@ 7x7 conv. layer, depth 3, stride 1 and dilation=3. o

® 2d dropout |.ayer. [6] _ _ Figure: Predicted scenicness of roads in Santa Cruz County and environs.

@ 2d max-pooling layer, kernel size 7, stride 2. )
@ Leaky Relu activation layer (p=0.01). Future Extensions

o 2d max_poo| |ayer’ kernel size 7 and stride 2. @ add GIS features (proximity to water, altitude, etc.)

@ linear |ayer W/ 128 output neurons. @ Satellite features (eg LANDSAT data)

e linear layer w/ 2 output neurons. @ out-of-sample predictions for entire U.S. and beyond. |

Training done in PyTorch on machine w/ 1080Ti GPU.

Conclusion
@ Streetview imagery can enhance computational understandings of
landscape aesthetics.

Data Augmentation

@ Flickr YFCC100M [7] image features + approximate geotagging =

average embedding of area near streetview image. @ Potential to use expert-curated geographic datasets as sources of

L : : : labels.
@ Use most / least discriminative 30 dimensions as inputs to model

predicting baseline probability @ Machine Learning + Sensors can help remove administrative biases in

data collection (i.e., only state hwys eligible for scenic designation).
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