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Results

Figure: Least and Most Scenic Images

Accuracy hovers at 60%.

Problem: not all streetview pictures on scenic roads truly scenic.

Out-of-sample predictions: county-maintained roads in Santa Cruz
County.

Reasonable results, but note issue with highway 1 (few trees, ocean
scenic too).

Figure: Predicted scenicness of roads in Santa Cruz County and environs.

Future Extensions
add GIS features (proximity to water, altitude, etc.)

Satellite features (e.g. LANDSAT data)

out-of-sample predictions for entire U.S. and beyond.

Conclusion
Streetview imagery can enhance computational understandings of
landscape aesthetics.

Potential to use expert-curated geographic datasets as sources of
labels.

Machine Learning + Sensors can help remove administrative biases in
data collection (i.e., only state hwys eligible for scenic designation).
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Abstract
Convolutional Neural Networks (CNNs) coupled with novel large image
datasets offer ample hope for building a computational understanding of the
relationship between humans and environment. CNNs are also particularly
effective at learning complex sets of rules, such as the ones governing
aesthetics. Here I present one potential application of computational
aesthetics to the detection of scenic byways. To do so I use a dataset of
Google Streetview images collected alongside California State Highways,
with labels derived from the California Department of Transportation official
“scenic byway” designation. A CNN is trained on a dataset of order-105

Streetview images, achieving moderate accuracy against a validation set.
With suitable refinement the approach shows promise in quantifying the
degree to which roadways are aesthetically pleasing, a measure with
potential applications in tourism, transportation, and urban planning.

Motivation
Aesthetics of locations important consideration for planning, land use.

Internet data showing great potential for fine-grained understandings of
human-environment interaction. [5, 4]

Deep learning using Streetview imagery [1] and satellite data [3] =
potential revolution in understanding the spatial dimension of social
data.

Computational aesthetics of natural landscapes under-researched,
despite evidence of important psychological impacts.[8]

Data

Figure: Scenic (red) and non-scenic
(black) sample points.

Labels: eligible scenic routes
according to CA DoT vs. all
state highways.

Images: balanced sample of
Google Streetview images from
scenic, non-scenic roads.

Methods
Deep convolutional neural network to predict scenicness given image pixels:

3x3 conv. layer, depth 10, stride 1.

Leaky ReLu activation layer (p=0.01).

2d batch normalization layer. [2]

2d max-pooling layer, kernel size 7 and stride 2.

7x7 conv. layer, depth 3, stride 1 and dilation=3.

2d dropout layer. [6]

2d max-pooling layer, kernel size 7, stride 2.

Leaky ReLu activation layer (p=0.01).

2d max-pool layer, kernel size 7 and stride 2.

linear layer w/ 128 output neurons.

linear layer w/ 2 output neurons.

Training done in PyTorch on machine w/ 1080Ti GPU.

Data Augmentation

Flickr YFCC100M [7] image features + approximate geotagging =
average embedding of area near streetview image.

Use most / least discriminative 30 dimensions as inputs to model
predicting baseline probability

Figure: Scenic and non-Scenic Flickr 100m tags.


