
Problem Statement

CS231n Spring 2017, Stanford University

[1] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. "Playing Atari with Deep Reinforcement Learning." [arXiv: 1312.5602]
[2] Chen, Zhao, and Darvin Yi. "The Game Imitation: Deep Supervised Convolutional Networks for Quick Video Game AI." [arXiv: 1702.05663]

Jerry Luo, Neha Narwal, Rajiv Krishnakumar

AI Attack: Learning to play a video game using visual inputs

Datasets

Methods

Experimental Evaluation

Future Direction

One of the overarching goals of the deep learning
community is to create AI that can make optimal 
decisions based on sensory input. This can be done in 
a game scenario [1].

The goal is to make a computer agent play the 
"endless" mode of the Super Nintendo Game 
"Tetris Attack" using only visual inputs (i.e. in-game
screenshots).

We train an agent with human gameplay data using a 
Deep Convolutional Neural Network and evaluate how 
it performs compared to variations of random play. 
We use similar and complementary methods to 
work that was done on Nintendo 64 games [2].

We collected 60,000 frames with corresponding 
actions using the BizHawk emulator and Bandicam
screen capture tool. We only capture a frame when an 
action occurs.

The histogram below shows the uneven distrubution of 
button presses.

Occasionally the screen capture is delayed by a few
frames causing our data to have some noise (i.e. 
inaccurate game state to button press correspondances).

Screen Capture process Histogram of button presses

Frames are downsampled to 104 x 64 x 3 using bilinear 
interpolation.

Once we’ve collected the frames and corresponding button 
press for that frame, we train a deep convolutional neural 
network to predict the next button press given an input 
frame. As an extension,we also trained a model that takes 
the current frame as well as the previous button press to 
predict the next button press in order to capture the 
memory of button presses.

After training the predictive model, we let the agent play the 
game automatically using pyautogui and check the score that 
the agent received.

The agent’s gameplay speed is bottlenecked by the 
screenshot capture utility, and the final gameplay speed is 
around 3 actions per second.

When training the models, we tend to overfit significantly, 
indicating that we lack data richness.

We use 0.5 dropout and 10-2 L2 regularization. At higher 
regularization, the validation accuracy doesn’t improve, 
while the training accuracy gets worse.

We compare the scores over 10 runs for various control 
policies. 

The image model does 
perform slightly better with 
more consistency than the 
weighted random policy 
despite low validation 
accuracy. Qualitatively, the 
agent tends to forget what it
was last doing, and doesn’t 
really follow any action trajectories.

The image model trained with the previous action doesn’t
do as well. Qualitatively, it does tend to follow an action 
trajectory better than the pure image model, but is 
oftentimes stuck in corners, which caused the poor 
performance.

Since overfitting indicates that we don’t have 
enough data richness, the next step would be to gather 
more training data, perhaps with multiple people’s
gameplay to capture more variations.

We can also create saliency maps to try and better
understand what features of the gameplay our models
are capturing. 

We can make the agent learn a Q function based on the 
current supervised learning policy, and use this to 
bootstrap Deep Q Learning [1].


