
Playing Geometry Dash with Convolutional Neural Networks

Ted Li, Sean Rafferty
Stanford CS 231n2, Spring 2017

Introduction

Emulation and Data Collection

Problems Encountered

Acknowledgements

Conclusion/Future DirectionsModel

References

Geometry dash is a rhythm based
platformer that requires the player to
avoid obstacles by either jumping or
idling as the character moves
forward through the map. In our
project, we set out to create an
agent that can play the game using
only visual data from the game. We
take two approaches: first as a
reinforcement learning problem and
then as a classification problem. For
both approaches, we use
preprocessed frames from the
emulator as inputs, generate
features, and then chose an action.
We compare the results of these two
frameworks and explore possible
pros and cons of each.

We designed our emulator to be compatible
with an OpenAI Gym environment. This
required us to implement a step function which
takes an action, uses it to emulate a step in
the game, and returns the resulting state,
reward, and whether that state is terminal. To
make the game discrete, we injected a DLL
into the application which causes all Windows
API calls that return a time to instead return a
fabricated time that is incremented by the
inverse frame rate every step. To input actions
and capture frames we used traditional
Windows API calls. To detect terminal states
we checked for the game over overlay. All of
this functionality was then wrapped into a
python library so that it could be used easily.

We began constructing our model with
reinforcement learning using a
Deep-Q Network. However, upon
experimentation, we learned that this
seemingly simple game was far more
challenging as a reinforcement
learning task. Reasons for this
included delayed failure and reward
propagation, lack of intermediary
rewards, multiple-step dependencies,
and the sharp, binary nature of
outcomes. While we believe a
reinforcement learning model can
overcome these issues, we found that
training a binary classifier was more
efficient and could achieve far better
results with significantly less time.
However, the classifier generalizes
poorly to new levels. Overall, we
believe that with much more data and
time, both of these models would be
able to successfully generalize to and
complete a variety of new levels.

Reinforcement
learning

We initially tackled this problem with reinforcement learning
using a Deep-Q Network, as popularized by Deepmind to play
Atari games. We learned that this seemingly simple game is
actually a challenging task when framed in a reinforcement
learning setting because incorrect actions lead to delayed failure,
there are no intermediary rewards, and because we often run
into two slightly different frames which require different actions.
For instance, when jumping over an obstacle if you jump one
frame too early you will collide with the obstacle up to 60 frames
later. To verify that the reinforcement learning setting was
problematic, we created a dataset by playing the game and
trained a classifier with the same architecture on this dataset. We
achieved 97% accuracy on a 50/50 validation split of the dataset
which was comprised of 67% idle actions and 33% jump actions.

Although Geometry Dash appears to be a simple game since there are only two
actions, the sharp binary nature that requires opposite actions for exceptionally
similar frames makes Geometry Dash challenging for agents which must
simultaneously learn to discriminate between these frames and generalize to new
unseen examples. When coupled with the noisy, delayed reward signal from
reinforcement, the task becomes nearly impossible.

⇐========= lol
Yeaaa what to do i just put it to get +1 XD

Ill also put the uhh image link

Idk if we need to reference all of em cuz we didn’t really go into depth into the RL
shit. Probably just the Deepmind stuff? Then maybe OpenAI 1 sec..
okdok
https://docs.google.com/document/d/1JU1OH07m3FEDsDavo4_
uJPMnSyZhW3a-ppWbCH2xxFg/edit?usp=sharing

Dense
Classifier

Geometry dash is a seemingly simple
side-scrolling game requiring the player to
avoid obstacles by either jumping or idling as
the character moves forward through the map.
In our project, we set out to create an agent
that can play the game using only visual data
from the game. We take two approaches: first
as a reinforcement learning problem and then
as a classification problem. Until recently,
reinforcement learning has been used
primarily on emulated games which allow
agents to take discrete steps. We wrote an
emulator wrapper for Geometry Dash to mimic
these recent examples and to unlock the use
of modern reinforcement learning frameworks
such as OpenAI baselines. For both
reinforcement learning and classification we
use preprocessed frames from the emulator
as inputs, process them with convolutional
layers, and finally pass them to dense layers
to produce the chosen action; the only
differences are in the last dense layers, loss
function, and reward signal. We compare the
results of these two frameworks and explore
possible pros and cons of each.

Experimental Evaluation and Results

Jumping just one frame early can result in failing the level, and the
visual difference between these two frames is miniscule. Furthermore,
the collision may occur many frames later (24 in this example). While
the negative reinforcement will propagate to this action, it will also
propagate to the previous frames where we did (and should not have)
jumped, causing us to jump even earlier. Hence, reinforcement
learning is not a good fit for our task.

We’d like to thank the CS231n
instructors and TAs for teaching the
class and helping with our project.

https://openai.com/
https://arxiv.org/pdf/1511.06581.pdf
http://www.nature.com/nature/journal/v518/n7540
/abs/nature14236.html

Test Name Training Accuracy Training % Jumps Test Accuracy Test % Jumps

Level 1 50/50 random split 0.988 0.445 0.928 0.442

Level 2 50/50 random split 0.978 0.465 0.872 0.444

Level 1 50/50 middle split 0.987 0.376 0.697 0.511

Level 2 50/50 middle split 0.988 0.523 0.564 0.387

Train Level 1, Test Level 2 0.985 0.444 0.665 0.443

Train Level 2, Test Level 1 0.984 0.455 0.618 0.455

We ran three simple tests to get an idea for how our model generalizes. We collected a complete run from the first two levels of the game.
The second level contains a jump pad mechanic while the first level does not. Both levels contain similar obstacles. In the first four tests we
train and test on the same level, splitting the half of the data both randomly and in the middle. In the last two tests we train on the entire level
and test on the other level. We will explore ways to generalize learning from one level to another.

https://docs.google.com/document/d/1JU1OH07m3FEDsDavo4_uJPMnSyZhW3a-ppWbCH2xxFg/edit?usp=sharing
https://docs.google.com/document/d/1JU1OH07m3FEDsDavo4_uJPMnSyZhW3a-ppWbCH2xxFg/edit?usp=sharing
https://docs.google.com/document/d/1JU1OH07m3FEDsDavo4_uJPMnSyZhW3a-ppWbCH2xxFg/edit?usp=sharing
https://openai.com/
https://openai.com/
https://arxiv.org/pdf/1511.06581.pdf
https://arxiv.org/pdf/1511.06581.pdf
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html

