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Geometry dash is a rhythm based 
platformer that requires the player to 
avoid obstacles by either jumping or 
idling as the character moves 
forward through the map. In our 
project, we set out to create an 
agent that can play the game using 
only visual data from the game. We 
take two approaches: first as a 
reinforcement learning problem and 
then as a classification problem. For 
both approaches, we use 
preprocessed frames from the 
emulator as inputs, generate 
features, and then chose an action. 
We compare the results of these two 
frameworks and explore possible 
pros and cons of each.

We designed our emulator to be compatible 
with an OpenAI Gym environment. This 
required us to implement a step function which 
takes an action, uses it to emulate a step in 
the game, and returns the resulting state, 
reward, and whether that state is terminal. To 
make the game discrete, we injected a DLL 
into the application which causes all Windows 
API calls that return a time to instead return a 
fabricated time that is incremented by the 
inverse frame rate every step. To input actions 
and capture frames we used traditional 
Windows API calls. To detect terminal states 
we checked for the game over overlay. All of 
this functionality was then wrapped into a 
python library so that it could be used easily.

We began constructing our model with 
reinforcement learning using a 
Deep-Q Network. However, upon 
experimentation, we learned that this 
seemingly simple game was far more 
challenging as a reinforcement 
learning task. Reasons for this 
included delayed failure and reward 
propagation, lack of intermediary 
rewards, multiple-step dependencies, 
and the sharp, binary nature of 
outcomes. While we believe a 
reinforcement learning model can 
overcome these issues, we found that 
training a binary classifier was more 
efficient and could achieve far better 
results with significantly less time. 
However, the classifier generalizes 
poorly to new levels. Overall, we 
believe that with much more data and 
time, both of these models would be 
able to successfully generalize to and 
complete a variety of new levels.

Reinforcement
learning

We initially tackled  this problem with reinforcement learning 
using a Deep-Q Network, as popularized by Deepmind to play 
Atari games. We learned that this seemingly simple game is 
actually a challenging task when framed in a reinforcement 
learning setting because incorrect actions lead to delayed failure, 
there are no intermediary rewards, and because we often run 
into two slightly different frames which require different actions. 
For instance, when jumping over an obstacle if you jump one 
frame too early you will collide with the obstacle up to 60 frames 
later. To verify that the reinforcement learning setting was 
problematic, we created a dataset by playing the game and 
trained a classifier with the same architecture on this dataset. We 
achieved 97% accuracy on a 50/50 validation split of the dataset 
which was comprised of 67% idle actions and 33% jump actions. 

Although Geometry Dash appears to be a simple game since there are only two 
actions, the sharp binary nature that requires opposite actions for exceptionally 
similar frames makes Geometry Dash challenging for agents which must 
simultaneously learn to discriminate between these frames and generalize to new 
unseen examples. When coupled with the noisy, delayed reward signal from 
reinforcement, the task becomes nearly impossible.
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Idk if we need to reference all of em cuz we didn’t really go into depth into the RL 
shit. Probably just the Deepmind stuff? Then maybe OpenAI 1 sec..
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https://docs.google.com/document/d/1JU1OH07m3FEDsDavo4_
uJPMnSyZhW3a-ppWbCH2xxFg/edit?usp=sharing

Dense
Classifier

Geometry dash is a seemingly simple 
side-scrolling game requiring the player to 
avoid obstacles by either jumping or idling as 
the character moves forward through the map. 
In our project, we set out to create an agent 
that can play the game using only visual data 
from the game. We take two approaches: first 
as a reinforcement learning problem and then 
as a classification problem. Until recently, 
reinforcement learning has been used 
primarily on emulated games which allow 
agents to take discrete steps. We wrote an 
emulator wrapper for Geometry Dash to mimic 
these recent examples and to unlock the use 
of modern reinforcement learning frameworks 
such as OpenAI baselines. For both 
reinforcement learning and classification we 
use preprocessed frames from the emulator 
as inputs, process them with convolutional 
layers, and finally pass them to dense layers 
to produce the chosen action; the only 
differences are in the last dense layers, loss 
function, and reward signal. We compare the 
results of these two frameworks and explore 
possible pros and cons of each.

Experimental Evaluation and Results

Jumping just one frame early can result in failing the level, and the 
visual difference between these two frames is miniscule. Furthermore, 
the collision may occur many frames later (24 in this example). While 
the negative reinforcement will propagate to this action, it will also 
propagate to the previous frames where we did (and should not have) 
jumped, causing us to jump even earlier. Hence, reinforcement 
learning is not a good fit for our task.
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http://www.nature.com/nature/journal/v518/n7540
/abs/nature14236.html

Test Name Training Accuracy Training % Jumps Test Accuracy Test % Jumps

Level 1 50/50 random split 0.988 0.445 0.928 0.442

Level 2 50/50 random split 0.978 0.465 0.872 0.444

Level 1 50/50 middle split 0.987 0.376 0.697 0.511

Level 2 50/50 middle split 0.988 0.523 0.564 0.387

Train Level 1, Test Level 2 0.985 0.444 0.665 0.443

Train Level 2, Test Level 1 0.984 0.455 0.618 0.455

We ran three simple tests to get an idea for how our model generalizes. We collected a complete run from the first two levels of the game. 
The second level contains a jump pad mechanic while the first level does not. Both levels contain similar obstacles. In the first four tests we 
train and test on the same level, splitting the half of the data both randomly and in the middle. In the last two tests we train on the entire level 
and test on the other level. We will explore ways to generalize learning from one level to another.
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