
DeepWhat?!

Systems with the ability to communicate naturally with 
humans have been one of the top goals of artificial intelligence 
research. Most research thus far generally fails to fully take 
into account past dialogue in the conversation as well as the 
context in which the conversation is happening. This limits the 
context in which these methods can respond.

DeepWhat?! is a system that attempts to tackle these issues 
by playing the GuessWhat?! game, trained on a dataset 
introduced in 2016 and fine-tuned with reinforcement learning.

Introduction

Charles Lu (clu8) and Eli Wu (eliwu)
CS231N Spring 2017

Problem

Results

The models performed well; they were able to get within 
5% of state of the art accuracy for all tasks or better
➢In practice, we found that guesser performance 

increased when the image crop was not included as a 
feature; perhaps consider leaving out or using different 
features as input

➢Consider using different features from pretrained
networks such as VGG or SqueezeNet

➢Consider using conversation history for the oracle

Discussion and Future Work

© Charles Lu and Elias Wu 2017

GuessWhat?! Is an interactive 
two player game in which players 
focus on an object within a rich 
natural image. 

The “oracle” is assigned a 
random object in the image, and 
is tasked with answering the yes 
or no questions of the 
“questioner”. The questioner is 
tasked with finding the object by 
asking the oracle yes or no 
questions about the image.

At a glance:
• 150K games
• 800K question-answer pairs 
• 66K images

In order to play GuessWhat?!, we split the problem into three 
parts, and utilize a different model for each component. 

Methodology

The oracle model takes 
as input the image, and 
correct object crop and 
spatial information. It 
returns, then, the answer 
to the question – yes, no, 
or N/A.

An example of a GuessWhat?! game 
being played by our model(s).

The guesser model takes as 
input the dialogue 
(question/answer pairs), as 
well as the spatial and 
category information of the 
objects in the image. It 
returns the predictions for the 
correct object. 

This project attempts to complete several tasks 
simultaneously— improving goal-driven dialogue generation, 
question answering, as well as object detection. These 
problems are encapsulated in the GuessWhat?! game, 
requiring the system to generate questions from images, 
generate answers from questions and images, and ultimately 
find objects within the images from questions, answers, and 
images.

The questioner model attempts to ask questions to lead to 
the correct guess. It takes as input an image, and produces a 
dialogue (some questions) as output. During training, we feed 
the ground truth questions as input; during evaluation, we 
implement sampling and beam search. 

Oracle Train Val Test
1 GRU, 2 FC 78.94% 73.63% 73.62%

1 GRU, 2 FC+Drop 65.28% 64.55% 64.65%

1 GRU layer, 3 FC 79.95% 75.5% 75.23%

2 GRU layers, 3 FC 80.02% 75.78% 75.44%

Dominant Class 52.6% 53.8% 49.1%

Guesser Train Val Test
1 GRU, 2 FC 64.21% 51.44% 51.58%

2 GRU, 2 FC 64.04% 56.69% 56.84%

2 GRU, 2 FC+Drop 58.31% 46.72% 50.26%

3 GRU, 2 FC 52.47% 48.03% 49.47%

1 LSTM, 2 FC 68.54% 56.43% 51.32%

2 LSTM, 2 FC 60.28% 51.71% 45.53%

Random 17.1% 17.1% 17.1%

End-to-end models for task-oriented visual dialogue with reinforcement

Oracle Model

Guesser Model

Questioner Model

Questioner Train Val Test
1 LSTM, random sample <Will Update>

2 LSTM, random sample <Will Update>

2 LSTM, beam search <Will Update>

2 LSTM w/ reinforcement, 
beam search

<Will Update>

Reinforcement learning fine-tuning. The GuessWhat?! game 
can be framed as a Markov decision process - the state at 
some point in the game is a tuple containing the image, all 
previous question-answer pairs, and all words already 
generated in the current question utterance. The question 
generation model therefore represents a stochastic policy. 

We fix the trained weights for the oracle and guesser to fine-
tune the questioner model. Each state-action pair is given a 
zero-one reward, which is only 1 when 𝑡 = 𝑇 and the 
guesser is correct. 
We use policy gradient with the REINFORCE algorithm due 
to the large action space (2000+ possible words). 


