
Game Playing with Deep Reinforcement Learning
using OpenAi Gym

Introduction
I Historically, designing game players requires domain-specific knowledge of

the particular game to be integrated into the model for the game playing
program.

I We explore the use of reinforcement learning and neural networks, in order to
architect a model which can be trained on more than one game.
• Typical Q-Learning learns a score for every single possible state-action pair. With images as

inputs, this is unfeasible.
• While training, a network can easily get stuck in a local optima with the wrong

hyper-parameters.

I Our goal is to improve on existing networks, such as DeepMind’s model
designed to learn multiple Atari games [1].

I Creating models which can generalize across multiple environments explores
the fundamental goal of Artificial Intelligence.

Problem Statement
I We begin by training a model to play Flappy Bird.
I The environment will come from the OpenAi Gym interface

[2].
I At each time step, we will receive a matrix representing the

pixel values of the current frame, as well a reward. We must
then return an action to be performed by our agent in the
environment.

I We evaluate the ability of the model by best average score over 100 episodes as
reported by the OpenAi Gym interface.

I We then retrain the same model on a di�erent game, Pixel Copter, to
demonstrate the ability to generalize.

Experiments and Results

Deep Q-Learning Flappy Bird

OpenAi Gym submission of score over about 7
million iterations

DQN predicted Q-value over the course of
training

Double Deep Q-Learning

OpenAi Gym submission of first epoch using
standard DQN

OpenAi Gym submission of first epoch using
Double DQN.

Pixel Copter Results

Preliminary OpenAi Gym score results for Pixel Copter using DQN (le�) and DDQN (right)

Conclusions and Future Work
I We were able to receive superhuman results on

Flappy Bird using Deep Reinforcement Learning.
• We reduced training time by utilizing our new sinusoidal

epsilon function
• We can further reduce training time and improve

performance by using Double Deep Q-Learning
• First epoch of Double Deep Q-Learning for Flappy Bird

shows a much smoother score curve over episodes,
confirming the increased stability hypothesis.

I Our model was able to transfer over to another game,
Pixel Copter
• Preliminary results indicate that we may need to tweak the

original model to achieve superhuman results
• Double Deep Q-Learning does not seem to o�er as

significant of an improvement compared to Flappy Bird. This
may be due to the simplicity of the graphics.

I We can replace the first fully connected layer with an
LSTM, which has been shown to add robustness to
the model [4].

Acknowledgements
1 V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. ntonoglou, D. Wierstra, and

M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013

2 Greg Brockman, Vicki Cheung, Ludwig Pe�ersson, Jonas Schneider, John
Schulman, Jie Tang, Wojciech Zaremba .(2016). OpenAI Gym. arXiv:1606.1540

3 Van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning
with double Q- learning. CoRR, Abs1509.06461.

4 HAUSKNECHT, M. J., AND STONE, P. Deep recurrent q-learning for partially

observable mdps. CoRR abs1507.06527 (2015)

Methods and Algorithms

Input Preprocessing

I Convert to greyscale
I Denoise the image using adaptive

thresholding
I Normalize values to be between 0 and 1
I Reduce input image to 80x80 pixels
I Stack last 4 frames as input to network

Deep Q-Learning

I We use the same update equation from Q-Learning based o�
the Bellman Equation
• Q(st, at) = Q(st, at) + α[rt + γmaxat+1Q(st+1, at+1) − Q(st, at)]
• Instead of explicitly computing Q for all state action pairs, we

approximate it using a neural network
I Q values are continuous which can be modeled as a regression

task and can be optimized with simple squared loss as follows
• Loss = 0.5 ∗ [r +maxa′Q(s′, a′) − Q(s, a)]2

Double Deep Q-Learning [3]

I In Deep Q-Learning, agent tends to overestimate the Q value
I Double DQN targets to reduce this maximization bias and

increase model stability with reduced variance
I Learns two Q functions independently Q1 and Q2, both based

o� original network model.
• Q1(s, a) = r + γQ2(s′, argmaxa′Q1(s′, a′))
• Q2(s, a) = r + γQ1(s′, argmaxa′Q2(s′, a′))

Models

Network Architecture
Type Classes / Filters Filter Size Stride Activation

Conv-1 32 8x8 4 ReLU
Conv-2 64 4x4 2 ReLU
Conv-3 64 3x3 1 ReLU

Fully Connected-1 512 ReLU
Fully Connected-2 # of actions Linear

Mini Epochs using ϵ

I We have introduced a new ϵ decaying function: one which
exponentially decays over time in a sinusoidal fashion.

I ϵ = ϵ0 · ϵxd ·
1
2(1 + cos(

2πxn
X ))

• ϵ0 is initial epsilon
• ϵd is decay rate
• n is number of mini epochs
• X is number of training

episodes
• x is current training episode

number Save the model at every minimum,
creating a mini-epoch

Flappy Bird scores when training a first epoch of 5000 episodes. Standard
exponentially decaying ϵ function (le�) vs our sinusoidal decaying function
(right)

Robert Chuchro Deepak Gupta
chuchro3@stanford.edu dgupta9@stanford.edu


