
The asynchronous advantage actor-critic model is demonstrated to be an
effective reinforcement learning algorithm at solving various game playing
environments (BeamRider, Breakout, Space Invaders). This is due to the fact
that parallel actors are leveraged to accumulate gradient updates and achieve
learning stability. However, when running the A3C reinforcement learning
algorithm on driving games like DuskDrive and NeonRacer, the optimal
behavior is going straight, i.e. pressing the ‘up’-key. It’s interesting because
the A3C algorithm is effective in generalizing across a variety games in open
ai universe (BeamRider, Breakout, SpaceInvaders). Unfortunately in driving
games it resorts to trivially going straight to maximize reward. We believe this
occurs for two reasons:

1. Network does not represent feature coordinates and suppress distractors.
2. No reward signal for accomplishing intermediate tasks.

Methods & Models

Conclusions

A3C Methods for Game Playing
Rahul Palamuttam (rpalamut), William Chen (wic006)

Stanford University

A3C Dueling Network Controller:
● 4 Convolutional layers

○ 32 (3,3) filters with (2,2) strides and ‘same’ padding
● LSTM with cell size of 256
● Spatial softmax layer
● Expected pixel position layer
● Fully connected layer for policy
● Fully connected layer for value

A3C Loss Functions:
● Value loss: LV = Σ(R - V(s))2

● Policy loss: Lp = log(π(s)) * A(s) + β*H(π)

Generalized Advantage Estimator:
● Discounted sum TD residuals:

● K-step discounted advantage:

● Generalized advantage estimator:

Worker Training Flow:

● The A3C model optimizes for speed and in
driving games that essentially means the model
exploits rather than explores.

● The ideal game should have a nearly constant
reward per time measure. However, for all four
experiments the reward per step variance was
very large. We need to have a lower reward
variance.

Future Work:
● Due to technical challenges we weren’t able to

incorporate intermediate signals such as the type
of turn to take for a given image. This would
essentially be a second convolutional neural
network that maps to a (left, right, up, down)
vector.

● We also want to incorporate experience replay

Introduction

Dataset
References

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P.
Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016.
[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel.
End-to-end training of deep visuomotor policies.
CoRR, abs/1504.00702, 2015.
[3] J. Schulman, P. Moritz, S. Levine, M. I. Jordan,
and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. CoRR,
abs/1506.02438, 2015.
[4] Z. Wang, N. de Freitas, and M. Lanctot. Dueling
network architectures for deep reinforcement
learning. CoRR, abs/1511.06581, 2015.

Problem Statement
We seek to improve the performance of the OpenAI universe starter agent on
the flashgame DuskDrive. We attempt to use spatial-softmax to enable the
network to represent feature coordinates and suppress distractors. Our
evaluation consists of implementing a spatial-softmax layer and comparing the
reward curve with that of the baseline agent and evaluating various learning
rates. We also evaluate an additional metric which is reward variance to study
the distribution of rewards per step as the models train.

Results
Baseline : Policy Saliency

A3C Dueling Network Architecture

Spatial Softmax : Policy Saliency

Learning Rate 1e-5

Spatial Softmax

Baseline : Extra Moves

Baseline: Just Up

 Legend

Policy Saliency
● Baseline activation

regions correspond to
the bushes, score, and
speedometer.

● Spatial softmax
showed no
activations. Note these
are taken once
training has
converged.

● No value saliency.

Performance Results
● With the additional spatial softmax layer, model achieved convergence

slightly faster than baseline.
○ SS intended to suppress distractor features

● We see that with a lower learning rate the model yielded a lower episode
reward but a higher reward per time. “Tried many moves”
○ Exploration heavy: reduced speed and episode length

● With a higher learning rate the baseline achieved a higher reward but
slightly lower reward per time. “Learned to just go straight”
○ Exploitation heavy: increased speed and episode length

Verdict : The best model still learns to just go straight

Episode Reward

Reward Variance

Reward Per Time

Our dataset consists of frames from the first level of the DuskDrive game. We
also evaluated a human agent and the corresponding move distribution for 10
games. We were able to achieve a score of ~75k by manually playing the game
while the model converged to ~35k.

