
The asynchronous advantage actor-critic model is demonstrated to be an 
effective reinforcement learning algorithm at solving various game playing 
environments (BeamRider, Breakout, Space Invaders). This is due to the fact 
that parallel actors are leveraged to accumulate gradient updates and achieve 
learning stability. However, when running the A3C reinforcement learning 
algorithm on driving games like DuskDrive and NeonRacer, the optimal 
behavior is going straight, i.e. pressing the ‘up’-key. It’s interesting because 
the A3C algorithm is effective in generalizing across a variety games in open 
ai universe (BeamRider, Breakout, SpaceInvaders). Unfortunately in driving 
games it resorts to trivially going straight to maximize reward. We believe this 
occurs for two reasons:

1. Network does not represent feature coordinates and suppress distractors. 
2. No reward signal for accomplishing intermediate tasks.
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A3C Dueling Network Controller:
● 4 Convolutional layers

○ 32 (3,3) filters with (2,2) strides and ‘same’ padding
● LSTM with cell size of 256
● Spatial softmax layer
● Expected pixel position layer
● Fully connected layer for policy
● Fully connected layer for value

A3C Loss Functions:
● Value loss: LV = Σ(R - V(s))2

● Policy loss: Lp = log(π(s)) * A(s) + β*H(π)

Generalized Advantage Estimator:
● Discounted sum TD residuals:

● K-step discounted advantage:

● Generalized advantage estimator:

Worker   Training   Flow:

● The A3C model optimizes for speed and in 
driving games that essentially means the model 
exploits rather than explores. 

● The ideal game should have a nearly constant 
reward per time measure. However, for all four 
experiments the reward per step variance was 
very large. We need to have a lower reward 
variance. 

Future Work:
● Due to technical challenges we weren’t able to 

incorporate intermediate signals such as the type 
of turn to take for a given image. This would 
essentially be a second convolutional neural 
network that maps to a (left, right, up, down) 
vector. 

● We also want to incorporate experience replay
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Problem Statement
We seek to improve the performance of the OpenAI universe starter agent on 
the flashgame DuskDrive. We attempt to use spatial-softmax to enable the 
network to represent feature coordinates and suppress distractors. Our 
evaluation consists of implementing a spatial-softmax layer and comparing the 
reward curve with that of the baseline agent and evaluating various learning 
rates. We also evaluate an additional metric which is reward variance to study 
the distribution of rewards per step as the models train.

Results
Baseline : Policy Saliency

A3C Dueling Network Architecture

Spatial Softmax : Policy Saliency

Learning Rate 1e-5

Spatial Softmax

Baseline : Extra Moves

Baseline: Just Up
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Policy Saliency
● Baseline activation 

regions correspond to 
the bushes, score, and 
speedometer.

● Spatial softmax 
showed no 
activations. Note these 
are taken once 
training has 
converged.

● No value saliency.

Performance Results
● With the additional spatial softmax layer, model achieved convergence 

slightly faster than baseline.
○ SS intended to suppress distractor features

● We see that with a lower learning rate the model yielded a lower episode 
reward but a higher reward per time. “Tried many moves”
○ Exploration heavy: reduced speed and episode length

● With a higher learning rate the baseline achieved a higher reward but 
slightly lower reward per time. “Learned to just go straight”
○ Exploitation heavy: increased speed and episode length

Verdict : The best model still learns to just go straight

Episode Reward

Reward Variance

Reward Per Time

Our dataset consists of frames from the first level of the DuskDrive game. We 
also evaluated a human agent and the corresponding move distribution for 10 
games. We were able to achieve a score of ~75k by manually playing the game 
while the model converged to ~35k.


