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Problem of Visual Navigation

* Navigate towards a target with visual input
* Applications in Robotics, autonomous ground vehicles, UAVs

* Learn relationships between action and environment changes

* Well suited for deep learning

, &k
T
\ '@ . %
%%'}. ;""

-
_):___ ;

Thor Framework and Dataset

* 4 scene types with ~68 objects

* 224x224x3 RGB images

* Agent navigates to target object
specified with a RGB image

* Python API to interact with scene

* (F,B,L,R) -> new image/collision

* Pre-trained ResNet-50 layers

Related Work

* Map-less navigation - Target-driven Visual Navigation in
Indoor Scenes using Deep Reinforcement Learning (Zhu)

* Dynamic Reinforcement Learning - Game playing, obstacle

avoidance using monocular vision

Physics Engines — Realistic interactive Newtonian world

simulation (Mottaghi)

* Asynchronous methods for deep reinforcement learning
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Problem Statement
* Can we add state to deep reinforcement learning to improve
Quality of Navigation (QoN) ?
* Measures of QoN: Path length, Number of Collisions, Training
Speed
* How well can we learn policy for targets not trained on?
* What memory architectures work well?
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Experimental Results
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Fig 2: Longer convergence
in complex scenes
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Untrained Training Training With
Network Without Target Target
Episode Length 42507 312.93 9.55
Reward 1.28 571 9.90
Collisions 49 82 13.04 0.16

Table 1: Path lengths, rewards and collision with and without training
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Improvement Percentage

Baseline Baseline LSTM Baseline L3TM/Base LS3TM/Base
bathroom_02_26 9.10 0.96 8.20 263 11.0% 174%
bathroom_02_37 900 1.00 870 214 3 4% 114%
bathroom_02_43 8.40 1.34 8.70 261 -3.4% 94 8%
bathroom_02_53 8.5 1.15 8.1 2.18 4 9% 89.6%
bathroom_02_69 7.8 1.34 76 2.8 2.6% 109%

Table 2: Baseline vs LSTM Episode Lengths
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Models
* Add context memory Q Q Q
to DRL )
* Multiple memory o
architectures
MQN RMQN FRMQN

Initial Conclusions and Ongoing Work
* Adding memory context results in small improvements in
episode path lengths. The training time (hnumber of images in
training episode increased by 80-170%), suggesting a tradeoff.
e Continue tuning and evaluation of memory models
* Determining approaches to better debug DRL networks and
speeding up training convergence
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