

Deep Reinforcement Learning using Memory-based Approaches

Manish Pandey Synopsys Inc

	Untrained Network	Tr Witho
Episode Length	425.07	3
Reward	1.28	
Collisions	49.82	1

Scene_target	Episode Length	Steps (M)	Episode Length
	Baseline	Baseline	LSTM
bathroom_02_26	9.10	0.96	8.20
bathroom_02_37	9.00	1.00	8.70
bathroom_02_43	8.40	1.34	8.70
bathroom_02_53	8.5	1.15	8.1
bathroom_02_69	7.8	1.34	7.6

Initial Conclusions and Ongoing Work

- Adding memory context results in small improvements in episode path lengths. The training time (number of images in training episode increased by 80-170%), suggesting a tradeoff.
- Continue tuning and evaluation of memory models
- Determining approaches to better debug DRL networks and speeding up training convergence

Acknowledgements The team would like to thank Yuke Zhu for his help with numerous questions on Thor, DRL and related topics.