
Fox Net: A Deep Learning Agent for Nintendo's Star Fox 64
Kevin Looby | Josh Grinberg | Kat Gregory

Stanford University | CS231N | June 5, 2017

Introduction

Autonomous vehicle navigation is a common prob-
lem in the field of artificial intelligence control.
Video games provide an excellent framework for test-
ing and evaluating control models, as they represent
an encompassing simulation environment that ap-
proximates realistic vehicle navigation in repeatable
training scenarios. We present a deep learning model
that pilots a video game aircraft through a hostile
environment, seeking both to eliminate adversarial
agents and navigate past obstacles. Even with only
minimal amounts of training, our best model yields
promising results.

Problem Statement

Develop an AI for Star Fox 64 that can outper-
form a human player.

Dataset Processing

Framework: In order to simulate a Nintendo 64
game console’s hardware, we use an emulator called
mupen64plus. The emulator outputs video frames
and receives commands from the trained agent via
a TCP socket. The framework for enabling this
connectivity was graciously provided by Alexander
Dewing and Xiaonan Tong.
Dataset: Our labeled dataset comprises 16,000
timesteps of games played by a strong human player.
For each timestep, we record a snapshot of the
screen, compressed by a factor of 10, along with
the corresponding “correct” action (of 7 possible)
taken at that timestep. We run this frame through
an OCR model and additional processing to extract
the score and the agent’s health from the upper-left
corner.

Figure 1: Sample training image from Star Fox 64.

Approach

Classification: Develop and evaluate four differ-
ent models with on-policy classification, optimizing
for consistency with a human player’s actions.
Q-learning: Improve the best-performing of these
models, DQN, with off-policy Deep Q-learning.

Evaluation Metric

Classification: Accuracy given labeled data.
Q-learning: Maximum score achieved by the
agent after losing three lives.

Method

Classification Goal: Predict the human’s actions.
Pseudocode:

Q-Learning
Goal: Improve a game-playing policy over time,
optimizing for max_score + health (0-10).
Pseudocode:

Models

Layer Number of Nodes
Affine ReLU 1024

Affine 7
Two-layer fully-connected neural network architecture

Layer Num Nodes Kernel Size Other
Conv-ReLU 32 7 -
Batch norm - - -
Conv-ReLU 32 9 -
Batch norm - - -

Pool - 2 Stride 2
Affine-ReLU 1024 - -
Dropout - - Rate 0.5
Affine 7 - -

Simple CNN architecture

Results: Comparing Models

Figure 2 compares the accuracies of various models
trained offline to perform classification:

Model Train Validation
Linear 64.1 41

Fox CNN
DeepMind DQN 98.6

DeepMind DQN Multi-Frame

Figure 2: Accuracies of four models after offline training.

As illustrated in Figure 3, our classification models
demonstrate a smooth increase in training accuracy
and decrease in training loss over 20 epochs of
training. This means that they accurately learn to
mimic human players - but offline training alone is
unlikely to create an agent that can outperform a
human.

Figure X: Classification accuracy and loss for Fox CNN.

The saliency maps in Figure 4 indicate that our
models will require more training time to identify
the most relevant features of a given situation - right
now, their only insight is to prioritize the center of
the screen.

Figure 4: Saliency maps from Fox CNN.

Results: Online DQN

Online results: Our online training yields promis-
ing results. Figure 5 charts a training period where a
model learned from a human player’s choices for 210
time steps as a warm start, and then began to play
on its own. The agent only achieves 4 points before
it dies on its first solo game; however, its score on
its second attempt surpasses that of the human who
trained it. High loss values indicate time steps at
which the model makes a large update, such as when
the agent lost a life at time step 210 and receiving a
reward of -100.

Figure 5: Online score and loss.

Conclusion

Although more training time is required to ex-
plore the full extent of its potential, our initial
results suggest that online Deep Q-Learning can
yield promising results.

Future Work

- Increase training time.
- Add DQN Target Network to increase stability.
- Demonstrate that each online Q-learning enhance-
ment independently improves results.
- Optimize hyperparameters for classification and
online Q-learning.
- Decrease exploration over time by decaying the
value of epsilon in e-greedy.

