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Introduction
Autonomously accounting for obstacle occlusion is an open problem for self-driving
cars. Dempster-Shafer Theory (DST) provides a scene-understanding and informa-
tion fusion strategy that addresses occlusion by modeling both lack of information
and conflicting information directly [3]. DST can combine sensor and digital street-
level map occupancy grids to discern cells that contain potential hazards from cells
that are navigable by the vehicle. The perception system can then anticipate ar-
eas where occluded hazards may appear. DST has been previously used as a pre-
processing step to a CNN in both semantic segmentation and object detection [9, 5].

Problem Statement
The approach in [3] is sensitive to parameters that require manual tuning to discern
static and moving obstacles. This work focuses on merging the FCN semantic seg-
mentation approach in [4] with the information fusion algorithm presented in [3], to
increase the latter’s robustness in discerning occupancy grid cells containing static
and moving objects from navigable space as compared with DST alone. An offset is
learned between the perception grid output of the DST algorithm and the expected
semantic labels. The effectiveness of the approach is measured in reference to the
DST baseline using the intersection over union (IU) metric for each of the classes.

Dataset
The KITTI tracking dataset [1] was augmented for use in information fusion. Four
driving sequences were selected for training (140 examples), two for validation (48
examples) and two for testing (64 examples). The augmented dataset consists of
a geographic information system (GIS) grid [6, 7], a sensor grid containing HDL-
64E Velodyne LIDAR data, and the labeled perception grid segmentation. These
grids are created for each ego vehicle GPS coordinate, which is obtained every 1 s
or 2 s depending on the sequence [1]. The datasets contain an imbalanced class
distribution with only 0.09% static cells and 0.26% moving cells in the training set.
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Figure 1: Example from the training dataset. From left to right, the figures are: GIS grid, sensor
grid, and the perception grid labels. The grids are of dimension 42.7m x 42.7m, with the ego vehicle
in the center. Given a discretization of 0.33m per grid cell, each grid is of size 256× 256 cells.

Methodology
The inputs to the baseline DST algorithm in [3] are the current sensor and GIS grids
as well as the perception grid at the previous time-step. The DST framework is in-
corporated into an FCN architecture to optimize grid sensitivity. The input to the
FCN is the set of probabilistic perception grids generated by the DST algorithm at

the current and previous time-step stacked in channels (10 channels total). By pro-
viding the current and previous DST perception grids as inputs, the FCN should be
able to learn the appropriate temporal information to classify moving and static cells
effectively. The architecture is based on [4]; it consists of 16 pre-trained convolu-
tional layers of VGG-19 interspersed with dropout and pooling operations, followed
by 2 convolutional layers and 3 deconvolutional layers. To make the 10-channel
DST occupancy grids compatible with the VGG model, an additional convolutional
layer was added at the start to reduce the input channel number to three. Since the
segmentation output is of occupancy grid dimension, a modified cross-entropy loss
is used, where the loss is weighted to resolve class imbalance and summed over all
grid cells. The Adam solver [2] is used to optimize the FCN parameters.
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Figure 2: Example of the DST output; each plot shows a probabilistic occupancy grid associated
with the semantic class label.

Experimental Results
learning rate keep probability batch size

FCN 1e-4 0.85 32

Table 1: Tuned model hyper-parameters based on IU metric.

The metric used to evaluate the performance of the proposed algorithm is IU:

IU =
TP

FP + TP + FN
.

IU is often used for semantic segmentation to directly account for class imbalance.

Navigable Non-Navigable Building Static Moving Mean

FCN-DST IU val 0.923 0.946 0.884 0.00737 0.0116 0.555
DST IU val 0.85 0.83 1.00 0.00135 0.0140 0.539

FCN-DST IU test 0.885 0.923 0.886 0.0 0.000649 0.539
DST IU test 0.775 0.786 1.00 0.000558 0.00120 0.512

Table 2: IU evaluations for each class on the validation and test sets.
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Figure 3: (left) Loss profile over iterations. (right) IU metric profile over iterations.

Table 2 shows that the tuned FCN architecture achieves a higher mean IU than
DST alone. However, it undesirably reduces the “static” and “moving” IUs in favor
of the more frequent classes. In experiment, increasing the loss weights of these
infrequent classes further, in an attempt to counteract this phenomenon, resulted in
less effective learning, likely due to insufficient data.

Furthermore, despite the loss curves in Figure 3 showing overfitting, the mean IU
continued to increase, indicating that the cross-entropy loss may not be representa-
tive of the IU metric. A method to utilize IU directly as a loss in a binary classifi-
cation problem has been proposed in [8]. Extending this formulation to multi-class
segmentation may improve the effectiveness of the proposed approach.

Conclusions and Future Work
The FCN-DST framework outperformed the DST baseline in the mean IU metric.
However, little improvement was achieved in discerning moving and static cells due
to insufficient data and a loss that was not representative of the evaluation metric.
In future work, to improve the accuracy of the model, further pre-processing should
be performed on the dataset, including the use of ground segmentation techniques
instead of hand-annotated labels [10]. This would significantly expand the size of
the dataset, facilitating more effective learning. Additionally, the loss should be
restructured such that it is based directly on the IU criterion.
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