Train station

film

Motivation

The amount and themes of video we deal with are immense On YouTube: **300** h uploaded/min, **5** B watched/day

- YouTube-8M dataset: 7 M video URLs, 3.2 B features, 4716 labels
- Goal: achieve higher accuracy rate using audio and visual features
- Input: frame-level visual and audio features (1 frame/sec)
- Output: multiple labels summarizing the key topics of the video

Methods

Traditional video classification limitation

- Only deal with visual features
- 2. Long runtime due to redundant temporal info
- Dataset is topic specific

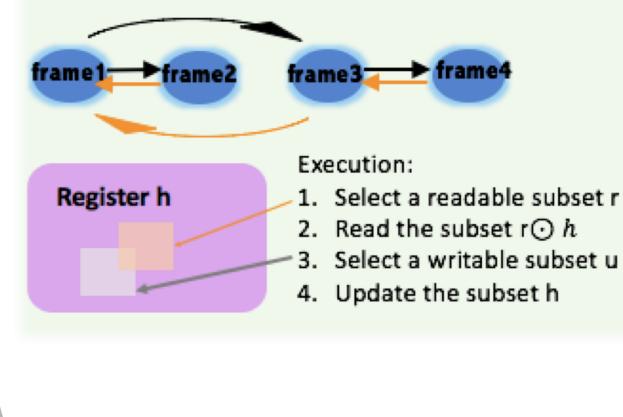
We are using a combination of frame-level audio and visual features and explore different ways to achieve a balance in them on the YouTube-8M, largest dataset ever.

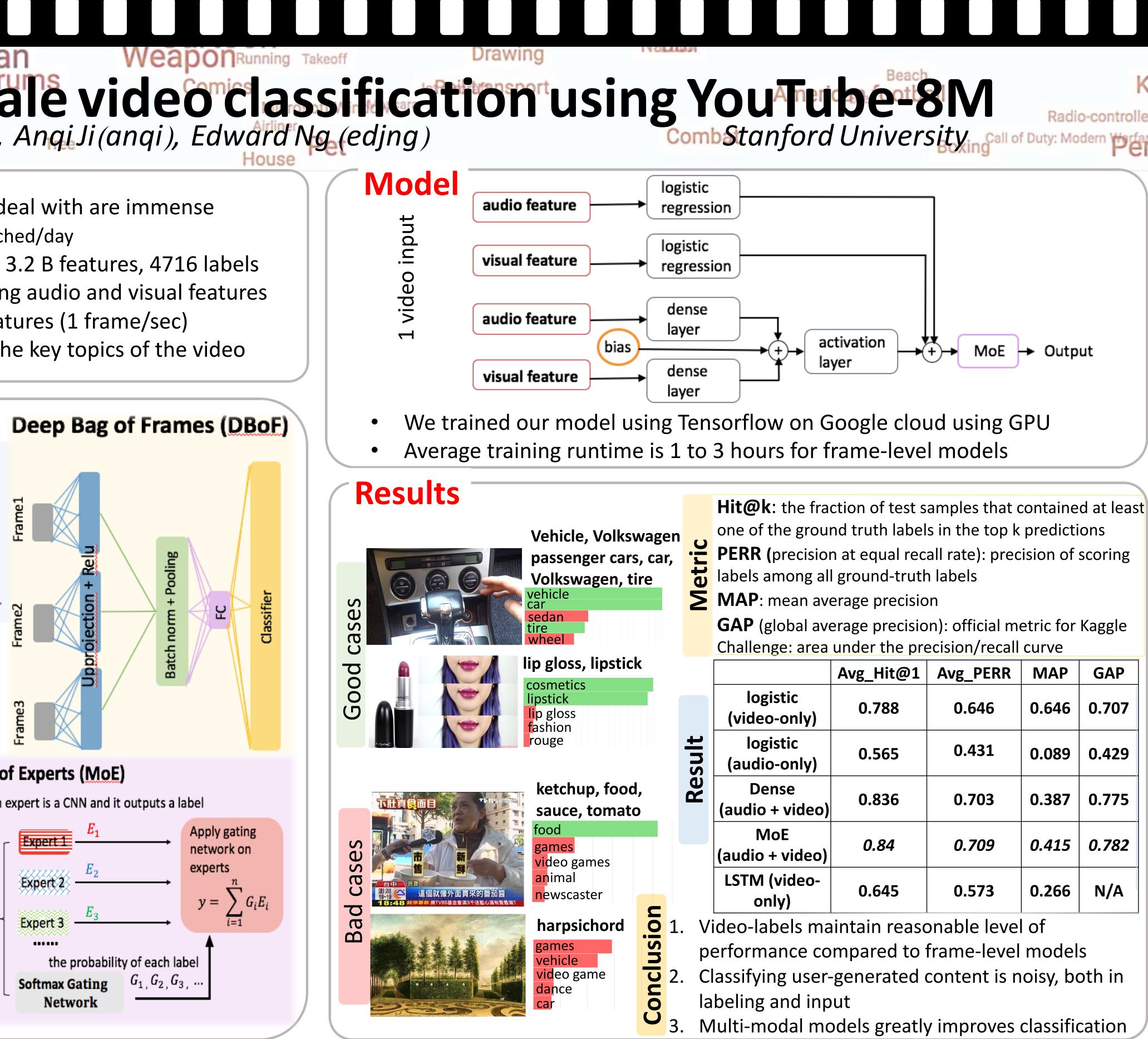
Gated Recurrent Unit (GRU)

Adaptive shortcut connections between different frames

 $f(h_{t-1}, x_t) = u_t \odot h_t + (1 - u_t) \odot h_{t-1}$

Candidate Update $h_t = \tanh(W[x_t] + U(r_t \odot h_{t-1}) + b)$ Reset gate $r_t = \sigma(W_r[x_t] + U_r h_{t-1} + b_r)$ Update gate $u_t = \sigma(W_u[x_t] + U_u h_{t-1} + b_u)$

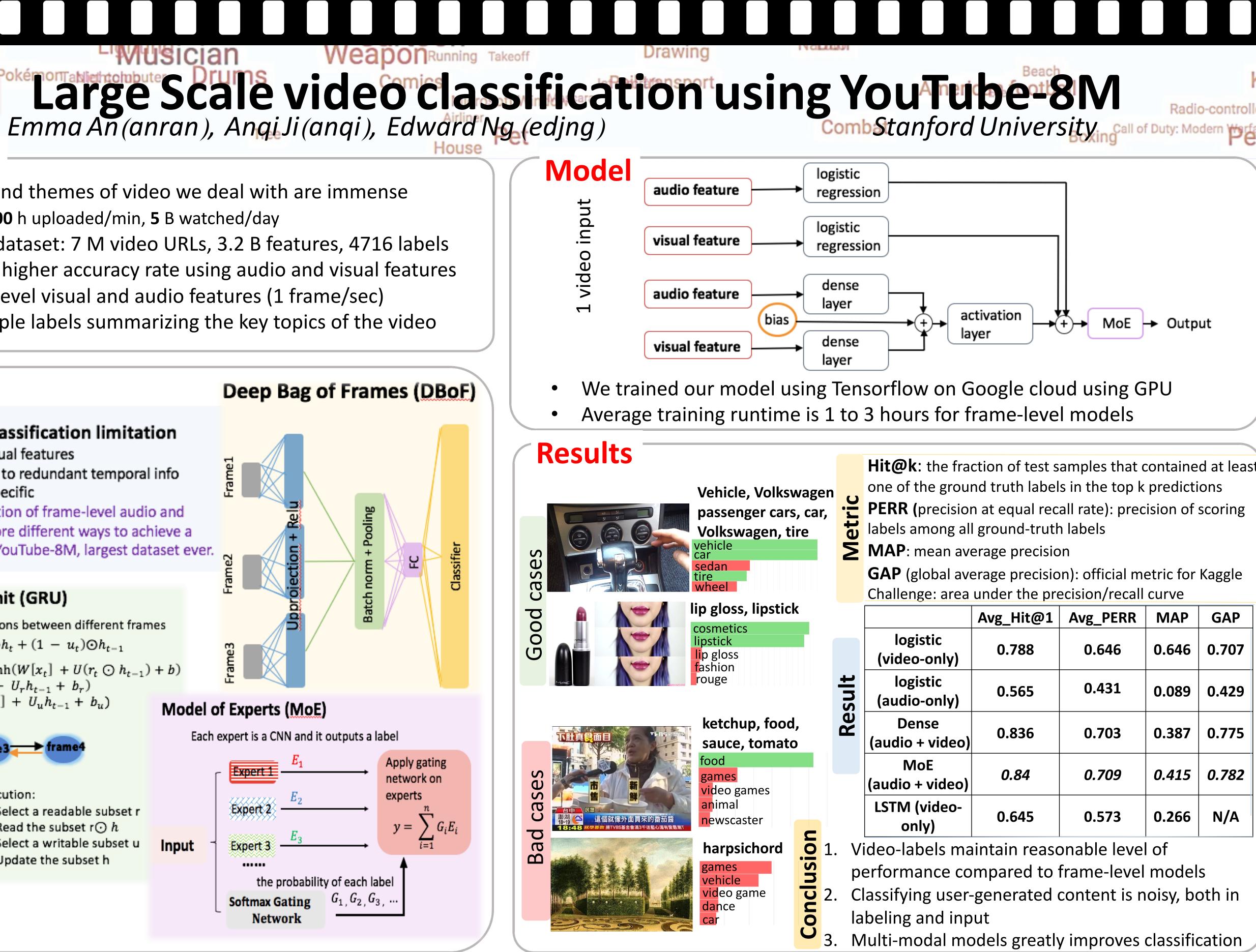




Model of Experts (MoE)

Input

Each expert is a CNN and it outputs a label



Radio-controlle

t@1	Avg_PERR	MAP	GAP
8	0.646	0.646	0.707
5	0.431	0.089	0.429
6	0.703	0.387	0.775
!	0.709	0.415	0.782
5	0.573	0.266	N/A