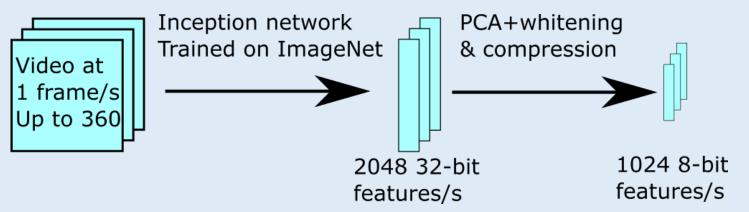
YouTube Video Classification Alexandre Gauthier and Haiyu Lu


Background

- Classify YouTube videos into categories
- Categories can be used in video search
- Large dataset provided by Google

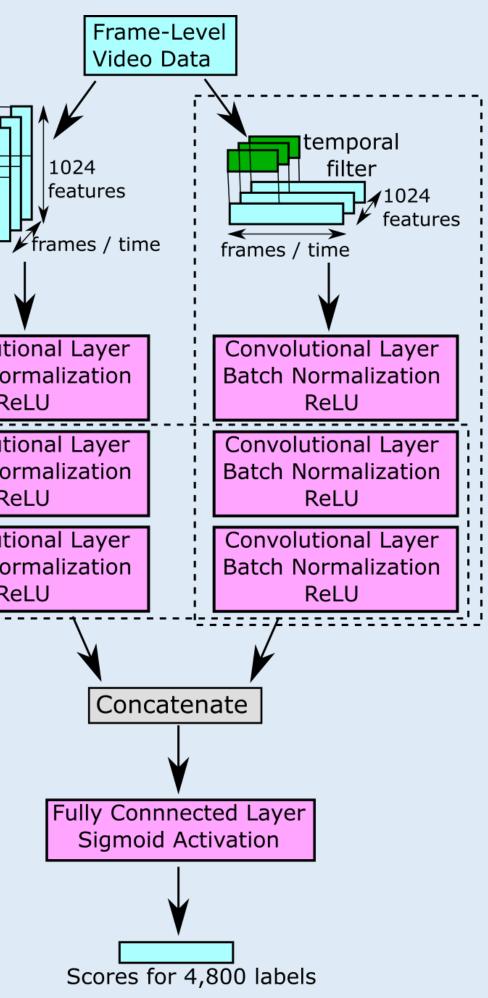
• Difficulties: Large dataset Lots of data in each video Combining spatial and temporal data

YouTube-8M¹Dataset

- 8,264,650 videos 70% training; 20% validation; 10% test
- Features: Individual frames preprocessed using network pretrained on ImageNet 1 frame per second analyzed Visual data: 1024 features/frame Audio data: 128 features/frame Video-level data averaged over all frames

Preprocessing of YouTube videos performed by Google

• Labels: 4,800 classes Each video has an average of 1.8 labels Generated from human raters and automated curation


agau@stanford.edu, hylu@stanford.edu

	P			
spatial				
filter				
	Convol	u		
	Batch I	٧d		
		F		
Ē	Convol	u		
1	Batch I			
- !		F		
	Convol			
-	Convol			
i	Batch I	_		
i		F		

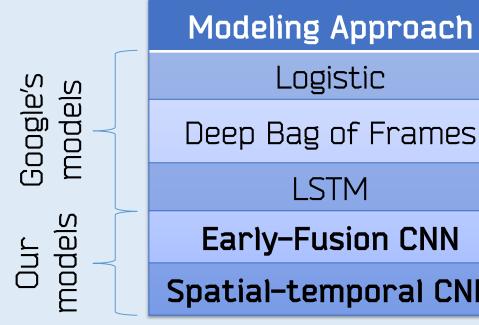
Algorithm

• Early–Fusion CNN²: Convolves over frame-level features Filter depth = # of frames

Two CNNs in parallel

• Spatial-temporal CNN:

One convolves over features (Spatial) One convolves over frames (temporal) Concatenate outputs at end


Accuracy Metrics

• Mean Average Precision (mAP): Average area under precision-recall curve. precision = $\frac{tp}{tp+fp}$

Higher mAP score is better • Hit@k: Fraction of the test samples that contain at least one of the correct labels in

- the top k predictions
- Precision at equal recall rate: Predict the same number of labels per video as there are in the validation data PERR = the fraction you get correct

Results

Convolutional models perform better Spatial-temporal CNN performs best Takes both feature and frame information into consideration

References

- [1] arXiv:1609.08675v1 (Main Google paper)
- [2] Karpathy, Andrej, et al. "Large-scale video classification with convolutional neural networks." *Proceedings of the IEEE conference* on Computer Vision and Pattern Recognition. 2014.
- Title Image: @joshuamaule and @surlyrightclick

	mAP	Hit@1	PERR
	11.0	50.8	42.2
5	26.9	62.7	55.1
	26.6	64.5	57.3
	27.6	77.0	62.2
Ν	29.7	77.4	63.1

recall = $\frac{tp}{tp+fn}$