

Prediction of Personality First Impressions With Deep Bimodal LSTM

Noa Glaser Karen Yang CS 231N Spring 2017

1. Background and Motivation

From job interviews to first dates, a first impression can make or break an interaction. Human form judgments in the first 100ms of interaction.[7] Can an AI predict apparent personality traits given a short video?

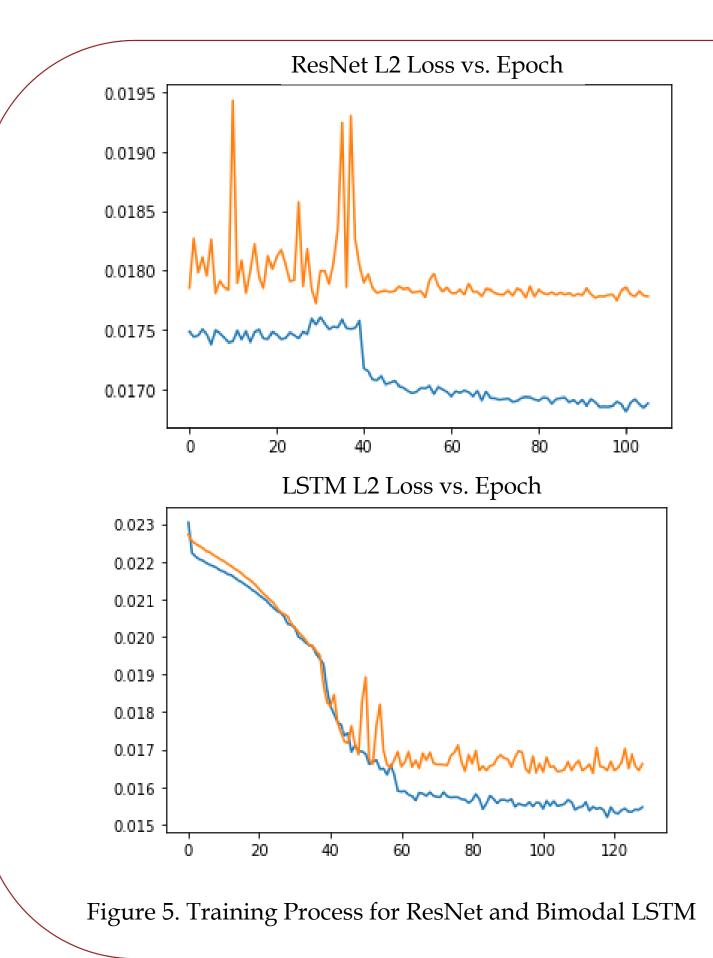
We propose a Deep Bimodal Regression LSTM model that extracts temporally ordered visual and audio features from a video clip to predict people's first impression on the "big five" personality traits widely used in psychology researches and personality profiling by hiring managers.

2. Problem Statement

Dataset

- 6,000 HD YouTube videos (duration ~15s) of people facing a webcam.
- Videos subjects vary in gender, age, nationality, and ethnicity. [8]

Evaluation Metric
$$\frac{1}{5N} \sum_{j=1}^{5} \sum_{i=1}^{N} 1 - \|\text{groundTruth}_{ij} - \text{predicted}_{ij}\|$$


- Labeled first impressions of the five personality traits on the range [0,1]
- Crowd sourced through Amazon Mechanical Turk

Model Input and Output

3. Methods Video Partition 1 10 partitions audio wave random crop, normalize (3 x 256 x 256) pyAudioAnalysis ResNet34 ZCR,MFCC,Chroma vectors, etc flatten 1x68 1x512 concatenate (1x32)(1x128)dropout: 0.2 Text 1x160 sequence of 10 **LSTM LSTM** LSTM (1x128)(1x128)(1x128)fc+sigmoid shared fc+sigmoid fc+sigmoid (1x5)(1x5)(1x5)(10x5) **AvgPool** 1x5 Agreeableness Conscientiousness Neurotism Openness Figure 4. Architecture of Deep Bimodal Regression LSTM [1,2,3]

4. Results and Evaluation

Evaluation Result						
Team	Mean Acc.	Extra.	Agree.	Concs.	Neuro.	Open.
Ours	0.9083	0.9110	0.8944	0.9220	0.9005	0.9136
NJU-LAMBDA	0.9130	0.9133	0.9126	0.9166	0.9100	0.9123
evolgen	0.9121	0.9150	0.9119	0.9119	0.9099	0.9117
DCC	0.9100	0.9107	0.9102	0.9138	0.9089	0.9111
ucas	0.9098	0.9129	0.9091	0.9107	0.9064	0.9099
BU_NKU	0.9094	0.9161	0.9070	0.9133	0.9021	0.9084

Table.1 Comparison of our results with the top 5 teams in ChaLearn First Impression Challenge [4,5,6]

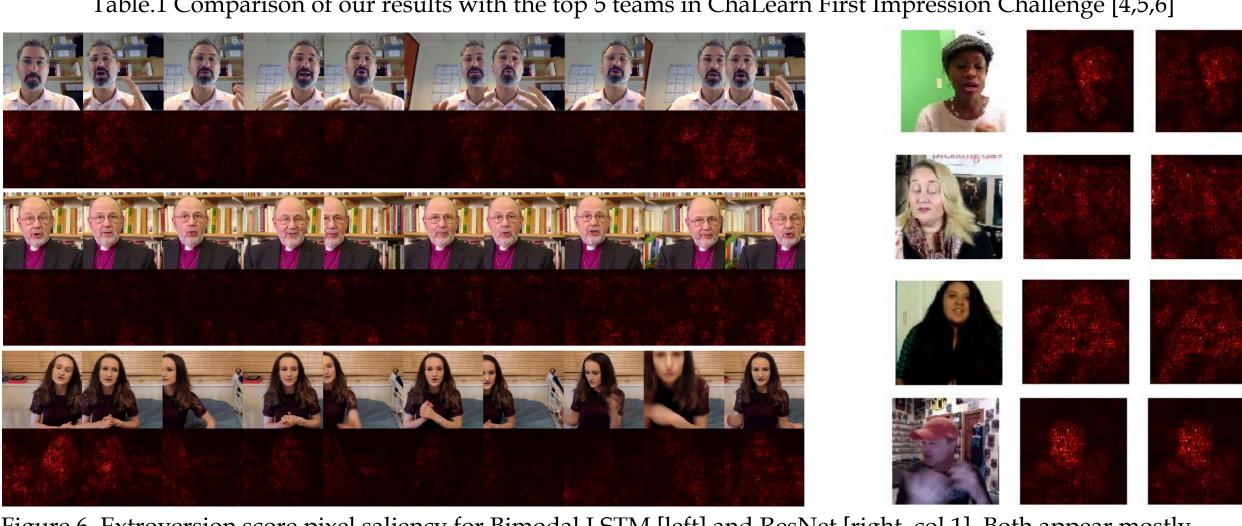
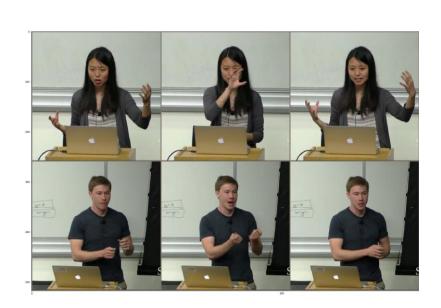
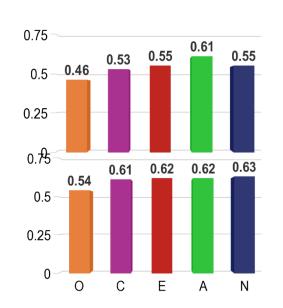



Figure 6. Extroversion score pixel saliency for Bimodal LSTM [left] and ResNet [right, col 1]. Both appear mostly influenced by human subjects. ResNet col 2 is saliency for neuroticism to show the trend is similar across features


5. Future Work

- (a) Experiment with other visual feature CNN extractors (VGG, Inception, etc)
- (b) Experiment with different RNN structures and input granularity in time
- (c) Add a speech cue: use transcripts extracted by speech recognition.

6. Acknowledgements

We would like to thank the CS231N instructors Fei-Fei Li, Justin Johnson and Serena Young, as well as the TAs for their guidance and support.

References:

[1] Torchvision. Resnet Pytorch Pretrained Model.

https://github.com/pytorch/vision/blob/ master/torchvision/models/resnet.py, 2017.

[2] T. Giannakopoulos. pyAudioAnalysis.

https://github.com/tyiannak/pyAudioAnalysis, 2017

[3] P. Adam, S. Gross, S. Chintala. pyTorch. https://github.com/pytorch/pytorch, 2017

[4] A. Subramaniam, V. Patel, A. et al. Bi-modal first impressions recognition using temporally ordered deep audio and stochastic visual features. 2016 [5] C. Zhang, H. Zhang, X. Wei, et al. Deep bimodal regression for apparent personality analysis. 2016

[6] Y Gucluturk, U Guclu, M. van Gerven, R van Lier. Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition. 2016

[7] J. Willis and A. Todorov. First impressions: Making up your mind after a 100ms exposure to a face. Psychological Science, (17):592-598, 2006 [8] J.-I. Biel and D. Gatica-Perez. The youtube lens: Crowdsourced personality

impressions and audiovisual analysis of vlogs. Multimedia, IEEE Transactions on, 15(1):41-55, 2013. http://chalearnlap.cvc.uab.es/dataset/24/description/#.