
Predicting Unit-Test Scores for Graphic Representations of Simple Computer Programs
Richard Davis

Spring 2017, CS231n
Introduction
• As enrollment in computer science courses grows, automated methods 

of grading student code submissions and giving feedback are necessary. 
However, it has proven difficult to represent code in a way that can be 
used in machine learning. 

• Prior methods represent code using abstract-syntax trees (Huang et al., 
2013), as collections of modifications that do not change functionality 
(Nguyen et al., 2014), and recursive neural network embeddings of Hoare 
Triples (Piech et al., 2015).

• This project introduces a new program embedding: images created from 
parsing the abstract-syntax tree. These images resemble programs written 
in Scratch (Resnick et al., 2009) or Snap (Harvey et al., 2013).

• To test the efficacy of this embedding method, we use a variety of 
convolutional neural network (CNN) architectures to predict the unit-test 
scores.

• Some CNN architectures significantly outperform a simple baseline, 
showing that this embedding method captures information about the 
program that can be learned by a CNN.

Data
• The raw data consist of student code 

submitted to the code.org website.
• The raw data contain over 100,000 unique 

code submissions from 762,974 unique users.
• I transformed the ASTs from these code 

submissions into images.
• The ASTs were categorized by their unit-test 

scores. These scores were converted into 6 
categories.

Research Questions
• Can we transform simple programs into images in a way that captures 

information about the program functionality? Can this information be 
learned by a CNN?

The HOC4 Problem

• Code submissions were for two problems: HOC4 and HOC18. 
• HOC18 was significantly more difficult than HOC4.
• HOC18 required the use of conditionals and loops, unlike HOC4.
• The images were RGB 250x250. The colors for each block were 

chosen using ColorBrewer2 for maximum contrast. 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

• The HOC4 maze and solution • The distribution of categories 
in HOC4

• Examples of each category in the HOC4 data

Results: HOC4
• All of the ResNet models 

performed well. 
• The ResNet-18 model achieved 

the highest overall accuracy on 
the validation set of 0.75.

• The VGG-13 model performed 
best out of the VGG architectures 
with an accuracy of 0.73

HOC4: Best Validation Accuracy
Model Best Validation Accuracy
Baseline 0.59
Vanilla CNN 0.63
ResNet-18 0.75
ResNet-34 0.75
ResNet-50 0.74
ResNet-101 0.75
VGG-11 0.71
VGG-13 0.73
VGG-16 0.71

Results: HOC18
• Only top models from HOC4 chosen for HOC18
• Despite the increased complexity of HOC18, ResNet-18 achieved even 

higher accuracy than HOC4 (0.80). The baseline for HOC18 was 0.44.

The HOC18 Problem

Architectures
• Simple baseline (predict most common class)
• Vanilla CNN
• ResNet-18, ResNet-34, ResNet-50, ResNet-101
• VGG-11, VGG-13, VGG-16
• SqueezeNet 1.1

• The HOC18 maze and solution • The distribution of categories 
in HOC18

Class 0 Class 2 Class 5Class 3 Class 4


