
Raw and learned speech features by deep models

Raw speech features (left column) are computed by Fourier Transform of each
short frame (25 ms), and grouping to 40 perceptual frequency channels by a
filterbank. A speech waveform is converted to a time‐frequency (TF) plane.
Learned features (right column) are computed by taking a context window of the
raw speech, passing it through the deep model (DNN, CNN, LSTM) to maximize
the correct HMM state probabilities P(s|o).
The target HMM states are obtained by first training a HMM‐GMM model, and
searching for the most probable state sequence S given the feature sequence O
as well as the word sequence transcription W.
For each input frame, DNN reshapes the context window into a long vector, but
CNN leaves the window as an image.
LSTM can model the long term sequential dependency between frames, whereas
DNN and CNN does frame‐based training.

Continuous speech phoneme recognition and conclusions
(more details on parameter tuning and large vocabulary word recognition in report)
Standard TIMIT database, 61 English phones (183 states), training set has 462
speakers (~5 hours), dev set has 50 speakers, and test set has 24 speakers, 8
sentences/speaker, all clean read data.
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Abstract
State‐of‐the‐art Automatic Speech Recognition (ASR) systems have
widely employed deep Convolutional Neural Networks (CNNs) as
acoustic models. Also, deep Long‐Short‐Term‐Memory (LSTM) recurrent
neural networks are powerful sequence models for speech data. This
work extensively investigates the effects of DNNs, deep CNNs, LSTMs
and Bidirectional LSTMs (BLSTMs) as state‐of‐the‐art acoustic models
for various ASR tasks.

Structure of ASR

 P(W|O) = P(O|W)P(W): P(O|W) probability of a feature sequence
given a word sequence, called acoustic model (AM), P(W) word
language model (LM).
Each word is decomposed into phonemes according to a lexicon, and
each phone is modeled by a 3‐state left‐right Hidden Markov Model.
Conventionally, the HMM state emission probability P(o|s) is modeled
by Gaussian Mixture Models (GMMs). DNN, CNN, LSTMs have replaced
GMMs.
LM is usually a N‐gram. Viterbi decoder puts together AM and LM at
test time.

Phoneme recognition accuracy (DNN and CNN
context size = 31 frames; ResNet‐17 and 33 refer to
the depth; LSTM/BLSTM have 4 layers, 1024
memory cells per layer or per direction). CNN and
LSTM greatly improve DNN. Deeper ResNet is
better than shallower ResNet, and BLSTM improves
single direction LSTM.

Feature space visualization by t‐SNE: raw feature
(left) has poor discrimination, and ResNet features
(right) extracted from the last avg. pooling layer has
much better discrimination over phone classes:

Phoneme recognition accuracy for reverberated
TIMIT data. Same conclusions as in clean data case.
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Model Accuracy (%)
HMM‐GMM 72.0
HMM‐DNN 78.1
HMM‐VGG 81.7

HMM‐ResNet17 81.1
HMM‐ResNet33 81.7
HMM‐LSTM 80.5
HMM‐BLSTM 81.6

Model Accuracy(%)
HMM‐GMM 57.2
HMM‐DNN 71.9
HMM‐VGG 75.6

HMM‐ResNet17 74.4
HMM‐ResNet33 75.2
HMM‐LSTM 73.7
HMM‐BLSTM 74.9


