
Evaluation

Motivation Detection Pipeline
In this project, we aim at deploying a real-time object detection system that operates at
high FPS on resource-constrained device such as Raspberry Pi and mobile phones.
Object detection can be applied in many scenarios, among which traffic surveillance is
particularly interesting to us due to its popularity in daily life. Although many systems
have proved their success since the era of machine learning and neural network, most
of the evaluations are done with high-end CPU or GPU. Nevertheless, real-world
applications such as surveillance pose strict constraints on the resources of the device:
low-power, small form factor, relatively good accuracy and fast speed, making it hard
to find a good trade-off when designing the system. We present an object detection
pipeline which is capable of working smoothly in the situation of traffic surveillance on
Raspberry Pi 3 with only 1GB RAM and 1.2GHz ARM CPU that costs merely $35.99.

● Benchmark our system our credentialed
datasets;

● Extend MobileNet to Detection framework(e.g.
SSD, faster-rcnn)

Real-time Object Tracking on Resource-constrained Device: MobileNet

Left: Depthwise Convolution layer structure
Right: Compartion of normal convolutional layer and
deepwise convolution layer

Yundong Zhang Pan Hu Haomin Peng
{yundong, panhu, haomin}@stanford.edu

Data Preprocessing

Initialization process:
● Config camera as video stream
● Take one frame from the stream as reference frame (will update it with

momentum as system runs)
● Initialized dependencies: OpenCV, average frame, TensorFlow

weights.

Region proposal:
● Get frame difference by subtracting current frame with reference
● Pass diff. frame through Gaussian filter to smooth out noise
● Pass diff. frame through Erode filter to remove smaller area of noise
● Pass diff. frame through Dilated filter to connect close-separated region
● Find contour on difference frame
● Construct rectangle bounding box based on contour

Classifier
● Crop frame according to bounding

box
● Resize cropped image to 224*224

Or
● Resize cropped image to 32*32

Or
● If image is larger than 224*224,

resize the image but keep aspect
ratio.If image is smaller than
224*244, place image in center of
the frame. Fill rest of image with
average value

● Feed image into classifier
● Draw bounding box and

classification label over the frame.

MobileNet Model
The backbone of our system is MobileNet, a novel deep NN model proposed by
Google, designed specifically for mobile vision applications. The main thing that makes
it stand out is the use of depth-wise separable (DW-S) convolution.

Future works

Speed (fps) Accuracy(mAP) Model Size

full-Yolo OOM 0.6847 269.9Mb

8-bit quantized
full-yolo

0.153 0.6133 64.4Mb

tiny-yolo 0.487 0.5514 60.5Mb

Ours 2.566 Classification acc: 67.9% 4.4Mb

proposed
regions

video
stream

single
picture unified

detection
system

temporal
detection
system

Mobile-
Net

classifier

We evaluate several systems on Raspberry Pi 3, which has four built-in ARM
Cortex-A53 processing cores. All the following models are trained from
Pascal-VOC object detection datasets. We also built a prototype system for
demonstration in this poster session, feel free to play with it.

● Our image data was supplied by VOC2012 detection dataset of 20 classes and of
various picture size, with training size of 5717 pictures and validation set of 5823
pictures. To guarantee that each picture only contains one region of interest, for
pictures with multiple objects, we generated a series of pictures with one object
by covering the other object with mean pixel.

● This step generated a 13609 pictures training set and 13841 pictures validation
set. After that, we resized each picture to 224x224 pixel.

Convolution
layer

Parameter
Size

Computation
Cost

Standard KxKxDxD’ KxKxFxFxDx
D’

DW-S KxKxD+DxD’ KxKxFxFxD+
DxD’xFxF

Eight-bit Quantization

● For each layer, compute the maximum, minimum and
step: (max-min)/255

● Quantize weights into its eight-bit version
● Doing computation in int16;
● dequantize to float8

Evaluation

