
Handwritten Text Recognition using Deep Learning
Batuhan Balci, Dan Saadati, Dan Shiferaw

Background

Data

Recognizing handwritten text has historically proven to be 
a difficult problem. The United States Postal Service was 
the first to attempt OCR (Object Character Recognition) in 
1982 to classify addresses. In the 1990s and 2000s, this 
problem was approached using HMMs, which required 
massive, manual, and error-prone feature engineering. 
More recently, deep learning, in the form of RNNs and 
CNNs, has been used for handwritten recognition and has 
experienced great success due to automated feature 
representation based off of raw data. Language models 
further refined classifications by estimating probabilities 
of candidate character/word sequences.

Methodology Results & Analysis
Word Classification Results(with Low Epochs 

due to Time and Budget Constraints)
Word Classification

 
 Training 

Accuracy
Validation 
Accuracy

Speed
(Relative to 
RESNET-18)

VGG-16 28%. 22% 3.98

RESNET-18 31% 23% 1.00

RESNET-34 35% 27% 1.67

Char-Level 
Classification

38% 33%  1.8

● For character segmentation from source text images, we 
used the Tesseract English language training data with 
over 450,000 lines of text spanning about 4500 fonts

● For direct word classification, we use the IAM dataset 
which provides handwritten text with over 110,000 labeled 
words contributed from 650 writers. 

● Rotating some word images 
slightly(before the padding step below) 
as some words might not have been 
written straightly

● Padding zeros around the word images 
to make all the images the same size

● Subtracting the dataset mean from the 
images

Preprocessing
● Fine-tuned the Tesseract LSTM-CNN segmentation 

model originally trained on internal English 
language dataset on IAM Handwriting dataset to 
output segmented character images from an input 
word/line/form image file

● Segmented character images were then fed into 
character-level classifier  

Segmentation

Figure 1: The input word is taken 
and is padded with white pixels 
so the images are consistent in 

size.
Figure 2: Images are tilted and rotated slightly in order to account for 

text not written completely straight.

● We first construct a vocabulary 
based on randomly selecting 50 
words with at least k 
occurrences in our dataset.

● We train our word classifier 
with multiple CNN 
architectures: RESNET-18, 
RESNET-34, and VGG-16

● We use cross entropy softmax 
objective function with Adam 
optimization for the training 
step.

Figure 3: A cloud visualization of the words that 
can contribute to the word vocabulary.

Figure 4: The activations of 
the first convolutional layer 
in the ResNet architecture 

for various filters when 
applied on one of the words 

in our dataset: ‘much’

Objective

Character Classification

Same underlying architecture. Changes included:
● Character-segmented input images
● Character-level vocab for final softmax output layer
● Different parametrization for model after training

Our project seeks to classify handwritten words. Our 
initial approach was classifying the handwritten words 
directly. After exploring this approach, we moved to 
segmenting individual characters and reconstructing the 
word based on the character classification.

We have found that classifying words directly is a very 
challenging problem because of the extensive vocabulary 
size. Segmenting characters and reconstructing words does 
better, but is limited by having any character be misclassified. 
We plan to extend our character-level word classifier by 
support with it with a language model that can calculate how 
likely it is that  that word was correctly classified. This will 
allow us to substitute characters and search for a more 
probable classification.

Conclusion/Future Work

Figure 5: Sample word image, character classification, confidence 
values, and bounding box values.

Figure 6: Training accuracies 
over 15 epochs  of the various 

approaches we have 
implemented.

Figure 7:(Cross Entropy) Loss 
over 15 epochs of the ResNet-18 

Model

● The curves on our 
loss graph show 
that  we have room 
to increase our 
training accuracy by 
increasing the 
number of epochs.

● The loss graph 
shows the majority 
of improvement 
occurs after around 
3 epochs.


