Deep Multi-Label Classification for High Resolution Satellite Imagery of Rainforest

Objective

- Label satellite images of rainforest with multiple land/air conditions - Automated labeling can track where/how/why of deforestation
- Use CNNs (Pretrained and Random) of various architectures
- Evaluate and improve performance of dataset labels

Dataset (Planet: Understanding the Amazon from Space) [1]

- Dataset of 40,000+ high resolution satellite images
- Images given up to 17 potential labels (some rare, some common)
- Images contain *specific* **and** *general* features

Models were set up to output 17 probabilities [0,1] that represent the presence of a given label belonging to an image, with averaged binary cross-entropy loss. A threshold is applied to create generated labels.

Model performance is based on validation accuracy and mean F_2 score

Precision: the ratio of true positives to predicted positives Recall: the ratio of true positives to actual positives F_2 score weights recall higher than precision

0.220			
0.200			-
0.180			-
0.160		1	
0.140		1	
0.120		1	
0.100			
0.0800			
0.0600			
0.0400			
0.0200			
0.00			-
-0.0200			-
	0.000	*0.00	20.00

Christian Castellanos, Andrew Nguyen, Robert Sun

CS231N, Stanford University

Methods and Experiments

Used a variety of pre-trained and randomly initialized state-of-the-art NN models (VGG, ResNet, Inception) as well as our own architecture for multiclass labeling of satellite imagery with the Keras Framework (Tensorflow) [2].

 $F_{\beta} = (1 + \beta^{2}) \frac{Prec * Recall}{(\beta^{2} * Prec) + Recall}$

Training History (Best Performing)

Loss

Accuracy

