

Understanding the Amazon Basin from Space

Background

- Amazon deforestation issue: climate change, habitat loss, reduced biodiversity.
- Kaggle competition hosted by Planet.
- Lots of machine learning models for other satellite imagery, but no robust method yet to differentiate human vs natural causes of deforestation for Planet imagery.
- Potential impact is to help global community to understand and respond to deforestation.

Dataset

- 256 x 256 x (3,4) satellite images of Amazon (JPG and GeoTIFF)
- 40k train images, 61k test images • **Remove 5k train for a validation set**
- 17 labels, heavily skewed.

mage Number: 10131. Tags: clear habitation road

Problem Statement

- Evaluated using F2 score.

Experiment Results

JPG images.

Model

Naive

MLP

DenseNet

ConvNet

InceptionV3 Tr

Resnet Transf

Resnet (single model)

Resnet (enser

train_40311.jpg Actual: cloudy **Predicted: clear primary water**

Findings and Future Work

- Low F2 scores for rare labels even with weighted loss.
- Dataset augmentation by rotation helped to increase the F2 score by ~0.2%, \bullet additional augmentation might provide additional increase.
- Models trained using GeoTIFF images perform worse than using JPG images. • GeoTIFF Images are not corrected for sun angle and distance.
 - Lack of available multi-spectral tools (preprocessing, model zoos)

CS231N, Spring 2017

Bojiong Ni (bojiong@stanford.edu), FNU Budianto (budi71@stanford.edu), Nickolas Westman (nwestman@stanford.edu)

• Given satellite imagery of Amazon basin, classify a scene.

• This is a multi-label classification task with 17 labels. Labels are created by

crowdworkers, so might be noisy.

Precision * Recall $F_2 = 5 * \frac{1}{4 * Precision + Recall}$

• 1-2 hours train time for most models using Google Cloud GPUs (k80), all with Per label F2 using Resnet (ensemble).

						<u>/•</u>	
	Val F2 (%)	Test F2 (%)	Label	Val F2 (%)	Label	Val F2 (%)	
	64.6	N/A	primary	99.15	habitation	78.49	
	64.6	N/A	clear	97.69	cultivation	68.56	
	66.98	N/A	partly_cloudy	94.2	conventional_	46.51	
	88	88	agriculture	90.4	mine		
ransfer	88	N/A	cloudy	87.64	bare_ground	42.96	
fer	90.4	90.6	road	86.63	selective_log aina	29.41	
9	92.6	92.25	artisinal_mine	85.71	blooming	19 89	
			water	85.53		2 16	-
nble)	93.03	92.796	haze	79.07	siasn_burn	5.10	-
ovamn		I]			blow down	0	

Noisy label example:

train_39604.jpg Actual: clear primary water **Predicted: clear primary water**

• As of 06/05/2017, got rank 26 out of 370. Top of leaderboard is at 93.296% F2. Resnet performs the best on this image classification task.

- There are some errors in the ground truth labels: ~10-15 mislabeled.
 - Averaging performs better than majority vote for models ensembling,
 - probably because the thresholds are optimized after averaging.

Methods and Models

- Weighted sigmoid cross entropy loss
- Per label threshold optimized for Val F2
- Dataset augmentation by rotation
- Ensemble of 13 Resnet(Average and Majority Vote)
- Exponential Moving Average of Weights
- Batch size: 32. Trained for ~10 epochs
- Implemented with Keras and Tensorflow

MLP

- $FC(1024) \rightarrow Drop(0.5) \rightarrow FC(17)$
- Adam: 1e-4 learning rate, 0.001 decay

ConvNet

- 2x (Conv3-32 → Conv3-32 → Pool2 →) FC(1024) → Drop(0.5) → FC(17)
- Adam: 1e-4 learning rate, 0.001 decay

DenseNet

- 25 layers, initial filter: 8, growth rate: 8
- Dropout: 0.2
- Adadelta: 0.5 learning rate, 0.001 decay
- Did not learn well

InceptionV3

- Transfer learning
- InceptionV3 \rightarrow FC(2048) \rightarrow Drop(0.5) \rightarrow FC(1024) \rightarrow Drop(0.5) → FC(17)
- Adam: 5e-4 learning rate, 0.001 decay

ResNet

- Transfer learning and full retrain
- ResNet50 \rightarrow FC(2048) \rightarrow Drop(0.5) \rightarrow FC(1024) \rightarrow $Drop(0.5) \rightarrow FC(17)$
- Adadelta: 0.5 learning rate, 0.002 decay

Acknowledgement

Special thanks to Google for providing Compute Engine credits to train the models.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015. [2]] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015. [3] F. Chollet et al. Keras. https://github.com/ fchollet/keras, 2015