

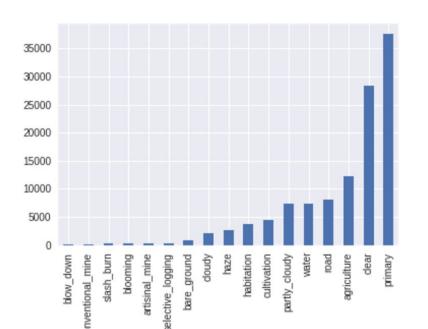
Land Cover Classification in the Amazon Zachary Maurer (zmaurer), Shloka Desai (shloka), Tanuj Thapliyal (tanuj)

INTRODUCTION

- The Amazon Rainforest is subject to aggressive deforestation. Automatically identifying areas of human encroachment could aid in conservation.
- We built a family of neural network classifiers which input a satellite image and output 17 distinct labels per image.
- We achieved an F2 score of 89% using transfer learning (Resnet) on a labeled dataset.
- Models were implemented in PyTorch and run on a Google Cloud GPU instance.

DATASET

- Data from Kaggle's "Planet: Understanding the Amazon from Space" challenge [1]
- The dataset consists of over 110K 256 x 256 image tiles labelled with at least one of 17 classes such as "primary rainforest", "water", "habitation", "cultivation", and "cloudy"
- 40K images for training; 60K images for test





- The most common label is "primary rainforest", followed by "clear". Images can have only one for four weather labels "haze", "clear", "cloudy", "partly cloudy".
- Dataset was augmented during training with random jitter, cropping, scaling and transposing.

<u>Baseline</u>

- XGBoost

Neural Models

Baseline CNN

- 0
- U-Net [2]
 - Recursive convolutional neural network.
 - Double-conv blocks that are successively downsampled and then recombined through upsampling.
 - Observed to perform Ο well on image segmentation.
 - Ο
- Pyramid Net^[5,6]

 - prediction layer.
 - SGD with Momentum_(0.9)

 $\log(x, y) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\frac{exp(x_i)}{(1 + exp(x_i))}) + (1 - y_i) \log(\frac{1}{1 + exp(x_i)}))$

- Ο

XGBoost **Baseline** CNN **U-Net** Simple U-Net Pyramid Net (Her **ResNet** (retrained ResNet (retrain Co ResNet (Conv + C VGG16

MODELS

• 18 features per image - mean, std, median, min/max, skew, kurtosis per channel (RGB)

• 3 layer sequential Conv-net + 2 FC layers Adam Optimizer ($\beta_1 = 0.9, \beta_2 = 0.999$)

Input

SGD with Momentum(0.9)

Similar recursive structure to U-Net

• Uses residual connections in addition to max pooling on the recursive "down".

rigure 2: U-net architecture

• All spatial levels are fed to aggregation and

 Above neural models trained with multi-label soft-margin loss and a sigmoidal predictions.

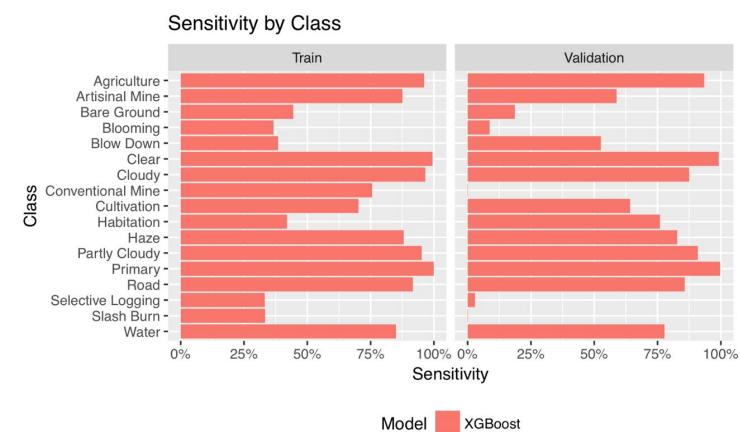
• VGG16 [3], trained last two FC layers • ResNet50 [4], trained last FC layer ResNet50, trained last Conv block + FC • ResNet50, last two Conv blocks + FC

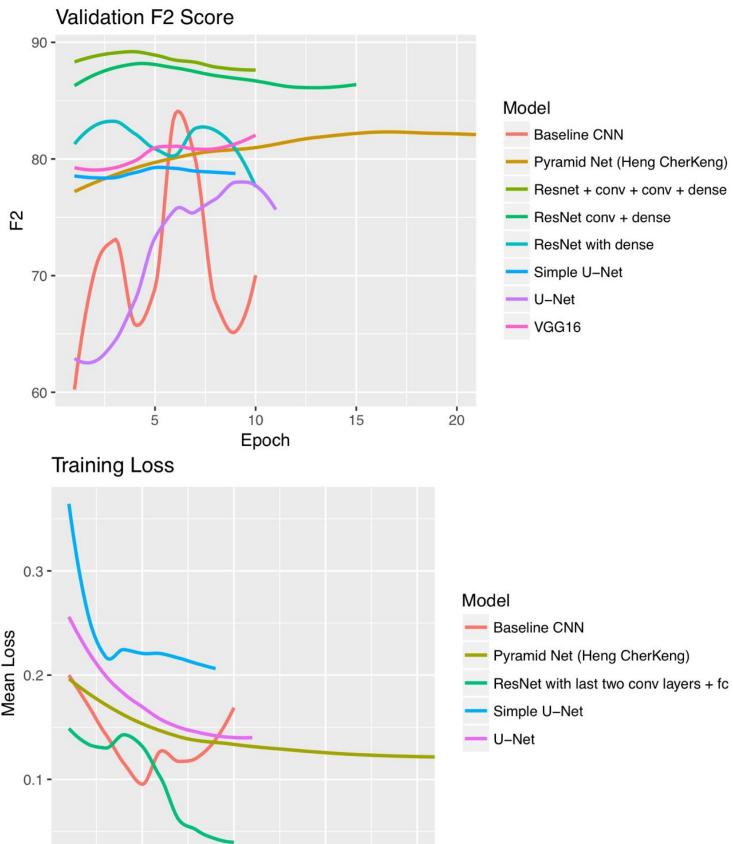
	Number of Parameters	
	Depth: 5, Estimators: 100	
	$14.8\mathrm{M}$	
	$8.6\mathrm{M}$	
	13.3M	
ng CherKeng)	$3.7\mathrm{M}$	
Dense)	35K	
conv + Dense)	14.9M	
Conv + Dense)	22M	
53	70K	

RESULTS

Validation Set Performance

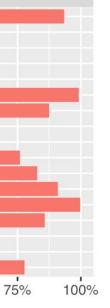
Model	F2-Score	Recall	Exa
ResNet (Conv + Conv + Dense)	89.24%	95.39%	58.5
ResNet (retrain $Conv + Dense$)	88.48%	95.16%	56.6
Baseline CNN	85.35%	93.89%	48.7
ResNet (retrained Dense)	84.81%	93.86%	48.7
Pyramid Net (Heng CherKeng)	84.08%	94.02%	46.8
U-Net	82.41%	93.19%	46.1
VGG16	82.18%	92.97%	42.3
Simple U-Net	79.61%	91.70%	37.9
XGBoost	79.40%	92.24%	39.1
Simple U-Net (Jacc. Loss)	74.40%	90.82%	32.0





Epoch

50%	
59%	
74%	
70%	
33%	
.3%	
33%	
8%	
6%	
00%	



N
(Heng CherKeng)
nv + conv + dense
/ + dense
dense
et

DISCUSSION

- Transfer learning performs the best amongst all approaches. Specifically, ResNet50 performed best
- Recursive neural networks seem to perform well on possibly related tasks (i.e. image segmentation). However, a standard U-Net implementation was not as performant as a U-Net with modified residual connections such as Pyramid Net.
- XGBoost is a formidable baseline given the simplicity of feature extraction and training.
- The imbalanced dataset caused per-class sensitivity to vary significantly.
- Using SGD-Momentum($\mu = 0.9$) was crucial to lowering loss below 0.2. LR Decay with Adam halted progress for early results.
- Per-class loss weighting did not improve \bullet performance on unbalanced dataset.
- Upsampling minority classes using a Least Squares Projection caused immediate overfitting that couldn't be solved with dropout.
- Modifying the loss function to include Jaccard distance seems to have been used effectively in other cases, but requires more tuning.

FUTURE WORK

- Train multiple sub-networks that specialize for label type.
- Condition neural architectures on statistical features.
- Ensemble all trained models.
- Train models on TIF infrared channel data.
- As an experiment, feed Resnet features into XGBoost
- Train models on entire dataset and compete on Kaggle
- Continue to tune hyperparameters, new LR schedules

REFERENCES

[1] Kaggle Planet Understanding the Amazon from Space Challenge: https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/ [2] Von Eicken, Thorsten, et al. "U-Net: A user-level network interface for parallel and distributed computing." ACM SIGOPS Operating Systems ACM. Review [3] Very Deep Convolutional Networks for Large-Scale Image Recognition arXiv:1409.1556 Zisserman. Simonvan. [4] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. [5] https://github.com/hengck23-kaggle/kaggle_forest_2017 [6]https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/ discussion/32402