

Abstract

In this project we classify the images in the tiny ImageNet dataset. We train the residual network on GPU using PyTorch. We use ResNet-18 to achieve 53.9% error rate on the test dataset. The effect of weight initialization is studied.

Background and Introduction

- Convolution neural network (CNN) is a powerful tool for image classification, however it is hard to train deep network
- Residual networks allow us to train deeper network
- Weight initialization and the activation function affects the training process

Problem Statement and Dataset

In this project we work on image classification problem using the tiny ImageNet dataset.

The tiny ImageNet dataset contains images with 200 different categories. The training set has 10⁵ images (500 images per category), while the validation set and test set has 10⁴ images.

yptian cat	reel	volleyball	rocking chair	lemon
	*		,	5
<u>Å</u>	100	N.		
M	1			1
J.		E.L.		
No.	₩.			200
No.			The second	X
and	E			Ö

Samples of images from the tiny ImageNet dataset

References

- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
- K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016. • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Aistats, volume 9, pages 249-256, 2010
- D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015
- D. Sussillo and L. F. Abbott. Random Walk Initialization for Training Very Deep Feedforward Networks. ArXiv e-prints, Dec. 2014.

/e use ResNet-1	8 w		
input			
7X7 conv-bn-relu, 64/2			
pool			
3X3 conv-bn-relu, 64	X2		
3X3 conv-bn-relu, 64			
3X3 conv-bn-relu, 128			
3X3 conv-bn-relu, 128	Х2		
3X3 conv-bn-relu, 256	VO		
3X3 conv-bn-relu, 256	Χ2		
3X3 conv-bn-relu, 512	X2		
3X3 conv-bn-relu, 512			
Ave pool			
fc-200			
softmax			

The pre-trained model start from low accuracy but converge fast. We fail to overfit when starting from scratch.

Tiny ImageNet Challenge

Yinbin Ma, Stanford University

Residual network

vith the following configuration:

Convolution filters from the first layer. We run 30 iterations from the pre-trained model.

Left: ResNet-18 configuration. Pre-trained models exist for ImageNet with the last layer being fc-1000 instead of fc-200

Overfit a small dataset

First we use ResNet-18 to overfit a small dataset of

Conclusions and Future work

- We train the residual network on the tiny ImageNet dataset
- We use pre-trained model to achieve 53.9% error rate on the test dataset, while training from scratch is challenging
- The study of weight initialization and activation function is in progress