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Improvement in image classification is a 
fundamental goal of computer vision and 

machine learning.

Tiny-ImageNet Dataset1

• ImageNet images cropped and scaled down 
to 64x64x3

• 100,000 train images
• 10,000 val, and 10,000 test images
• Accuracies tend to be much lower than on 

ImageNet due to the granularity of the scaled 
images, and poor cropping 

• Significant data augmentation required to 
prevent heavy overfitting

• Small weight decay coefficients tend to help 
the model achieve higher validation accuracy

• Our smallest model (ResNet18) performed the 
best, indicating that our other models overfit 
due to their size 

• Snapshot ensembles outperform their 
corresponding models trained using standard 
methods and the same training budget

• We found that within three cycles (36 epochs), 
snapshot modules would have a higher 
validation accuracy than our traditionally 
trained models would after 72 epochs

Regularization

Snapshot Ensembles

Models
• Use cyclic learning rates in order to train several models with one 

training pass – allows for ensembles to be created very quickly
• We trained snapshot ensembles using 6 cycles of 12 epochs each over a 

total of 72 epochs

• At the end of each trial, the correct category 

was revealed and the subjects recorded the 

accuracy of their category guess. 

Experimentation Details

• Data Augmentation
• Randomly crop each image to size 56x56x3
• With probability of 0.5 we horizontally flip each image
• Predictions made using 10-Crop averages2

• Smaller Models
• Shallower, thinner models provide implicit regularization

• Weight Decay
• Standard L2 weight decay has been show to help with both 

training and validation accuracy for image classification2

• Adam Optimizer
• Initial learning rate of 0.001
• Learning rate divided by 10 every 24 epochs
• 72 epochs of train time
• Early stopping to help prevent overfitting

AlexNet2

• Uses convolutional layers, max pooling, and 
fully connected layers to map the input 
image to a class

• Adjusted for the Tiny-ImageNet dataset by 
setting the stride of the first conv layer to 1, 
and by removing a max pooling layer

ResNet3

• Uses residual blocks with identity mapping
• Residual connections allow gradients to 

propagate easily
• ResNet[N] corresponds to a Residual 

Network with a depth of N

WideResNet4

• Uses an empirically better residual block
• WideResNet[N]-[K] corresponds to a 

residual network with depth N that has K 
times more filters than a standard ResNet
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Model Top-5 Val Top-1 Val Top-1 Test

AlexNet 0.487 0.254 -
AlexNet + a 0.717 0.487 -
ResNet34 + a 0.734 0.523 -
WideResNet28-10 + a + d 0.773 0.564 -
WideResNet32-4 + a + d 0.778 0.571 -
WideResNet32-4 + a + d + snap 0.803 0.595 -
ResNet18 + a + d 0.795 0.589 -
ResNet18 + a + d + snap 0.814 0.602 0.536

a = data augmentation d = weight decay snap = snapshot ensemble

All  values are accuracy rates

A Residual Block3

Models
• ResNet models outperformed AlexNet

models; they also were easier to train
• Deeper Models offered little improvement

• Postulated that this is due to residual 
connections allowing layers to be entirely 
skipped4

• The model generated by the 
first cycle is thrown out 
because it tends to perform 
worse than later models

• Weighted averages are used 
to combine model 
predictions


