
Tiny	ImageNet	Challenge	- Scaling	of	Inception	Layers	for	
Reduced	Scale	Classification

CS	231N	Poster	Session
Emeric	Stéphane Boigné,	Jan	Felix	Heyse
{eboigne,	heyse}@stanford.edu

Tiny	ImageNet	Challenge
The Tiny ImageNet Challenge is a classification challenge within the
CS 231N class, using the Tiny ImageNet dataset.

Tiny ImageNet Dataset
The Tiny ImageNet is a dataset used for the training and testing of
neural networks for visual recognition problems comprising images
of dimensions 64x64 pixels. It covers 200 different classes with:
• 100,000 labeled training images
• 10,000 labeled validation images
• 10,000 unlabeled test images

Pre-processing and Data Augmentation
The data is first normalized such that the training set has zero mean
and unit variance. Data augmentation was used to increase the
amount of available training data. For each image we added a
second one, which was with equal probability either
• flipped in the horizontal direction,
• rotated clockwise (6, 8 or 10 degrees), or
• rotated counterclockwise (6, 8 or 10 degrees).
This yielded a training dataset of almost 200,000 labeled images.

2 – Our	Convolutional	Neural	Network	Architecture

Network	
Architecture

1	– Problem	Statement	and	Dataset

3	– Training	the	Network

4	– Visualization

Visualization	of	activation	features
• For each Inception module, we looked at the

most 6 activated images for different
neurons (bottom images with true label)[2].

• We computed the gradients of the neuron
with respect to the input images yielding a
map of the pixels that are sensitive to the
neuron (top images with predicted label) [3].

First	Inception	Module

5	– Future	Work

References

Scatter	plot	of	the	validation	accuracy Prediction	accuracy	learning	history	for	baseline	and	current	CNN

Third	Inception	Module

Analysis	in	Feature	Space
• We extracted the data entering the last

layer and performed a PCA
• The reduced representation has 3

dimensions, accounting for 16% of the total
variance. It is shown below for 3 labels.

Principal	Component	Analysis	– Clustering	of	three	labels

[1] C.	Szegedy,	W.	Liu,	Y.	Jia,	P.	Sermanet,	S.	E.	Reed,	
D.	Anguelov,	D.	Erhan,	V.	Vanhoucke,	and	A.	
Rabinovich.	Going	deeper	with	convolutions.	CoRR,	
abs/1409.4842,	2014.	
[2]	M.	D.	Zeiler and	R.	Fergus.	Visualizing	and	
understanding	convolutional	networks.	CoRR,	
abs/1311.2901,	2013.	
[3]	Erhan,	D.,	Bengio,	Y.,	Courville,	A.,	and	Vincent,	P.	
Visualizing	higher-layer	features	of	a	deep	network.	
In	Technical	report,	University	of	Montreal,	2009.	

Carry	on	the	Visualization	Analysis
• Develop a Deconvolutional Network

to visualize the activated pixels
instead of the ones corresponding
the high fluctuations [2].

• Leverage our visualization results to
guide our improvement of the
current architecture

Layer Filter	size	
/	stride Output	size

convolution 3x3	/	1 62x62x128
max	pool 4x4	/	2 30x30x128

inception	#1 30x30x128
max	pool 2x2	/	2 16x16x128

inception	#2 16x16x128
inception	#3 16x16x256
max	pool 2x2 /	2 8x8x258

inception	#4 8x8x320
avg pool 8x8	/ 1 1x1x320

fully	connected 1x1x200
softmax 1x1x200

# 1x1 3x3	
red 3x3 5x5	

red 5x5 pool

1 32 48 64 8 16 16
2 32 48 64 8 16 16
3 64 96 128 16 32 32
4 80 120 160 20 40 40

CNN Architecture
Inspired from [1], our design is a
reduced version of the original
GoogleNet, which was designed for
1000 classes. We investigate how
the Inception module architecture
scales for a smaller classification
task of 200 classes. Each
convolution layer is followed by a
batch normalization, a ReLU
activation, and for the current
architecture by a drop out layer.

Inception Modules
Inception modules are elements in
CNNs that consist in parallel
convolutions concatenated depth-
wise.

Overfitting
We tackled overfitting by introducing
dropout layers and by varying the
number of parameters of our
architecture.

Hyperparameter fitting
On a reduced size dataset, we
compared accuracies while performing
a random search over the weight decay
and learning rate to get a range of
reasonable values.

Last	Inception	Module

