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Abstract

Natural adversarial examples [7] have been shown to
significantly degrade neural classifier performance and that
today’s models have common failure modes such as an
over-reliance on background, texture, and spurious corre-
lations in the training data. At the same time, develop-
ments in video and augmented reality are providing new
sources of images with significantly different distributions.
The recently released Ego4D video dataset contains over
3,000 hours of video from almost 1,000 volunteers who
wore cameras and performed daily activities. I use a subset
of that data, from their Hands & Objects Benchmark, which
contains annotations for static frames containing objects.
I evaluate five popular model families, including ResNet,
ConvNext, and Vision Transformer, zero shot on this data
and after finetuning. Zero shot Top-1 accuracy across all
models is very low on this Ego4D Subset with the highest
at 18%. After finetuning, performance improves but is still
low, with the highest Top-1 accuracy achieved at 38% by a
ViT. This demonstrates further weaknesses in the general-
ization ability of today’s neural classifiers and the potential
of egocentric data from augmented reality applications to
improve the robustness of these models.

A. Introduction
Several works have demonstrated that ImageNet [1] has

relatively simple test examples [14], that today’s neural
classification models are not robust to distributional shifts
[7], and that these models rely on spurious [3] (e.g. planes
against a blue sky) or textural cues too much [4]. Con-
sequently, both artificial and naturally-selected adversar-
ial examples [7] have proven effective at degrading neural
classifier performance. At the same time, developments in
video research and applications for augmented reality are
providing new sources of images and video with signifi-
cantly different distributions. The Ego4D dataset [5] is a
recently released large video dataset of egocentric video,
which presents an opportunity to study out of domain gen-
eralization and robustness with natural examples of a highly

Figure 1. Example images from the Ego4D Subset introduced in
this work demonstrate that egocentric data are natural adversar-
ial examples for popular neural classifiers. From left, the Ego4D
annotation “screen” versus laptop demonstrates the difficulty of
mapping one label space to another. The paintbrush in the second
image is relatively small, and all models fail to classify it. The
mop is viewed from an unusual perspective due to the camera’s
location on the body. 2 out of 3 models actually classify the lawn
mower correctly. The overlay is gradient-weighted Class Activa-
tion Mapping (GradCAM [16]).

different distribution.
In recent years, the robustness of neural classification

models has been tested and found lacking. Models have
been found to engage in “shortcut learning” [3], where they
rely on background, texture, pose or other cues instead of
true image understanding. Related to this lack of real-world
understanding in learned representations are natural adver-



sarial examples. These are human-produced images, as op-
posed to artificially created data, which induce common
models to make incorrect predictions. The ImageNet-A and
ImageNet-O datasets [7] contain images filtered by hand
which cause common models to generate incorrect predic-
tions with high confidence. In that work, the authors evalu-
ate a range of models and find that all perform very poorly
on their datasets and that popular models contain similar
failure modes.

The ImageNet-A dataset contains highly curated im-
ages adversarially filtered for poor performance by common
models. On the other hand, egocentric data like that of the
Ego4D dataset provides the opportunity to study truly “nat-
ural” examples from a different modality and perspective
due to the camera typically being worn on the head. Ego4D
has several subsets of data, but in this project, I use the
Hands & Object benchmark, which contains video footage
of participants manipulating objects with their hands. I fil-
ter this video data for annotated static images of objects.
In addition, I further remove any images missing an anno-
tation which maps to an ImageNet class and any images
which contain more than one annotated ImageNet class.
This results in an ultimate test set of 3,321 images for
ImageNet-1K evaluation and 7,398 for ImageNet-21K eval-
uation [1]. This data has 69 unique ImageNet-1K classes
and 248 ImageNet-21K classes using the above methodol-
ogy. Hereafter, I refer to this data as the Ego4D Subset.

I evaluate several common neural classifiers zero shot ac-
curacy on this new data. I evaluate both convolutional mod-
els and Vision Transformers of various sizes. Model fam-
ilies used include: ResNet [6], RegNetY [13], ConvNext
[11], Vision Transformer [2], and EfficientNet V2 [18] [19].
I find that all models regardless of architecture perform very
poorly without additional finetuning, though larger mod-
els have some benefit. I also evaluate models pretrained
on the larger ImageNet-21K dataset and then finetuned on
ImageNet-1K, which show a small benefit. The last zero
shot evaluation I perform is on two models pretrained solely
on ImageNet-21K. For this evaluation, the Ego4D Subset
annotations are re-mapped to the larger 21,843 class set of
ImageNet-21K, and I use a multilabel classification variant
I developed due to annotation ambiguity. See the Data sec-
tion for further discussion. I also finetune one model from
each of the model families on half of the new Ego4D Sub-
set, and while performance on the Subset improves, it is still
low. The best performing model, a ViT, achieves only 37%
Top-1 accuracy (See Figure 2).

This work confirms prior results [7] such as ImageNet-A
and demonstrates that today’s neural classifiers have diffi-
culty recognizing “natural adversarial examples” of known
classes with different distributions. In addition, it points to
the promise of augmented reality egocentric video data as a
potential plentiful source of novel training data.

Figure 2. Original zero shot Top-1 accuracy on the Ego4D Subset
compared with finetuned performance on 1,626 examples. Most
models except ConvNext Base improved significantly, but even
the best Top-1 accuracy is still relatively low at 37%.

B. Related Work

The robustness of neural classification models, their in-
ability to generalize to unseen examples, and their tendency
to memorize spurious correlations has been increasingly an-
alyzed in recent work. Even a new similarly curated dataset
to the very popular ImageNet demonstrated that with only
slightly more difficult examples, neural classifiers lose 11-
14% accuracy [14]. As introduced above, models have been
found to engage in “shortcut learning” [3], where they rely
on specious correlations found in image training datasets
but not in the real world. Consider a green hillside, which
is devoid of animals, but a neural model may predict “sheep
grazing” due to the normal occurrence of sheep on such
backgrounds. These models can misclassify a cow on a
beach, because cows are normally not found there! [3] Deep
Neural Networks (DNNs) generalize but very differently
than humans. Further work investigated models’ reliance on
texture and demonstrated via a simple test showing images
with conflicting texture versus shape that neural classifica-
tion models do not generalize based on shape, but largely
on texture [4]. When given the same test, humans demon-
strated learning based on shape. Over-reliance on spurious
correlations leads neural image classifiers to perform poorly
in more complex real-world scenarios. The authors sug-
gest in [3] that a good out-of-domain (OOD) generalization
test should include: (1) a clear distribution shift, (2) a well-
defined intended solution, and (3) a test where the majority
of current models struggle. The new Ego4D egocentric data
fulfills these criteria, which I will discuss further below.

Related to these efforts to investigate the lack of real-
world understanding in learned representations are nat-
ural adversarial examples, which induce common mod-
els to make incorrect predictions. The ImageNet-A and
ImageNet-O datasets [7] contain images filtered by hand



which cause common models to generate incorrect predic-
tions with high confidence. ImageNet-A has classes com-
mon to ImageNet, while ImageNet-O contains classes out-
side ImageNet but which common models are not able to
classify as unknown. Prior to this work, adversarial test-
ing had largely involved “artificial adversarial examples,
which are examples perturbed by nearly worst-case distor-
tions” [7], while ImageNet-A and ImageNet-O use only nat-
ural examples. Evaluating on a range of models, the authors
find that most do very poorly and can score as little as 2%
accuracy. However, they do find that increasing model size
and using some architectural modules such as self-attention
can slightly improve performance. One downside to this
work is that it required a large amount of human filtering.
So much so, that graduate students were asked to memo-
rize the 1,000 ImageNet classes in order to avoid images
that contained more than one class. On the other hand, a
higher percentage of egocentric data may be more naturally
challenging due to its highly different distribution.

Other work [9] further investigates failure modes uncov-
ered by ImageNet-A and finds that model performance suf-
fers on that dataset due to three issues: multiple objects in
a single image, object classes against unusual backgrounds,
and small size relative to that found in ImageNet. To ad-
dress the second and third issues, [9] releases a new dataset
where they more closely crop the ImageNet-A images, and
they see improved performance as a result. For the first,
in spite of the intensive human-based filtering described
above, the ImageNet-A dataset contains a significant sub-
set of images with multiple objects. This is important to
note for the construction of the Ego4D Subset described in
this work.

These model weaknesses in terms of robustness and out-
of-domain generalization suggest that there is still signifi-
cant work to do in this area, that natural examples may be
very valuable, and that having a clear distributional shift
is important. As referenced above, the egocentric video
data in the newly released Ego4D [5] dataset fits these cri-
teria with a diverse set of natural examples from an ego-
centric perspective uncommon to previous computer vision
datasets. Egocentric video looks wildly different than static
image datasets and than other video datasets. The per-
spective, the lack of viewing angle stability, and other as-
pects introduce distinct complexities. The Ego4D dataset
is wide ranging and was collected by a consortium of uni-
versities from around the world. Currently, the dataset con-
tains 3,670 hours of video from camera-wearing volunteers,
which span hundreds of settings and activities (household,
outdoor, workplace, leisure, etc.) The video data was also
collected in a range of geographies across 74 locations in 9
countries.

The Ego4D dataset contains 5 major video benchmarks,
described further in the Data section. Within each, the

dataset team has released data and annotations for specific
subtasks as well as model baselines. As introduced above,
I use data from the Hands & Object benchmark, which
contains video footage of participants manipulating objects
with their hands. Interestingly, there is some evidence al-
ready that existing models to not generalize well to this ego-
centric data. The most challenging of the Hands & Objects
subtasks is a frame-wise binary classification task to iden-
tify object state changes (such as burning, splitting, etc) in
a video. Existing models achieve very low scores on it with
a maximum of 15 average precision.

In this work, I evaluate several recent popular neural
classification models of various sizes and designs. I de-
scribe the high-level architectures briefly given the reader’s
likely familiarity with these models and leave discussion of
the specific hyperparameters used to the Methods section.
The first model evaluated is the classic convolutional model
architecture composed of residual blocks, the ResNet [6].
This architecture contains residual blocks with connections
that side-step the main block, which allow the network to
learn the residual from the prior layer rather than the entire
input.

A more recent model variant using residual blocks is the
RegNetX architecture. This was developed as a result of a
new “design space” of potential model architecture families,
with the constraint that the models’ blocks have varying
widths according to a linear function. The models common
design is composed of a stem, body, and head. The body
has stages, and the stages have residual blocks. RegNetY is
the RegNetX architecture plus the Squeeze-and-Excitation
block [8], and it achieves superior performance to RegNetX.
The authors state that RegNets are five times faster to train
than the EfficientNet [18] on GPU, and they compared hun-
dreds of different architectures in their study.

After success in NLP, the VisionTransformer (ViT) [2]
was introduced as a model using only self-attention without
any convolutional layers. It models images as a sequence
of patches and achieved comparable performance to con-
volutional networks when pretrained on a large dataset. I
use the AugReg [17] released models. That work studied
the interplay between data augmentation, regularization and
performance. The authors released 50,000 pretrained mod-
els. They found models that with increased compute could
match those trained on much larger, non-public datasets.

After VisionTransformer, ConvNext [10] was developed
as a purely convolutional architecture that claims to outper-
form ViTs on several tasks including COCO detection while
requiring less compute. It has similar blocks to ResNet,
but instead of BatchNorm uses LayerNorm and instead of
ReLU uses GeLU. Separately, the EfficientNet work [18]
introduced a way to scale the depth, width and image res-
olution systematically using a single compound coefficient,
which is not dissimilar to the RegNet approach. The intu-



Figure 3. Examples from the Ego4D dataset that demonstrate its
difficulty. Upper left: the mop is seen from an unusual perspective.
Upper right: objects may be small relative to the size of the image.
Bottom left: images may be cluttered with many objects. Bottom
right: unusual tools and objects are common. Both the bottom
conditions are filtered out of the new Ego4D Subset used in this
work.

ition is that network dimensions should increase as image
size increases. The authors also released a set of models
based on a baseline found using neural architecture search.
Later, EfficientNetV2 [19] followed on the initial work with
even more efficient models improved by new specialized
operations. In addition, they progressively train on larger
images, and though this technique alone can decrease accu-
racy, they balance this with adaptive regularization through
dropout and data augmentation. They argue that the V2 ar-
chitecture outperforms the ViT by 2.0% for Top-1 accuracy
on ImageNet-1K while training 5-11X faster.

C. Data
As introduced above, all evaluations in this work are per-

formed on a subset of the recent Ego4D dataset [5] called
the Hands & Objects Benchmark. Ego4D contains 3,670
hours of egocentric video data as of the present date, and
the data comes from almost 1,000 camera wearers across
74 worldwide locations. The dataset is split into full video
and shorter clips with annotations around particular events.
Ego4D contains 5 major benchmarks with annotations spe-
cific to each. The benchmarks are: Episodic Memory (vi-
sual and language queries to video such as “where did I
leave my keys?”), Hands and Objects (videos of participants
manipulating objects with their hands), Forecasting, Audio-
Visual Diarization (localize the speaker), and Social (pre-
dict if a speaker was speaking to the camera-wearer among
other tasks in a multi-person setting).

The Hands & Object data contains 88,585 video clips to-
tal across training, validation, and test. In the training set,
there are 41,085 clips total split approximately evenly be-
tween positive (has a state change) and negative (does not

Ego4D Paper Statistics
Hours of Data 196.2
Number of clips 88,585
Average length 8.0 sec
“Change Objects in Train Split” 19,347
Processed Dataset Statistics
Total Clips Listed in Dataset Index 19,071
Duplicate Clip + Frame 107
Clip Had No Object Label 120
Total Parsed 17,754

Figure 4. Top table: Ego4D Paper Statistics for Hands & Ob-
jects. Bottom table: actual data downloaded and processed. The
total clips listed in the index file that accompanies the dataset were
slightly inconsistent. In addition, while individual frames con-
tained multiple annotations, a small number of images were also
duplicated; these were eliminated during processing.

ImageNet 1K vs 21K IN-1K IN-21K
Total Images 17,754 17,754
Images with ≥1 IN class 3,474 8,488 [4,835]*
Images with > 1 IN class 153 1,090
Invalid images 1 1
Images with 1 IN class 3,321 7,398
Total IN Classes 1000 21,483
Ego4D IN Classes 69 248 [419]*

Figure 5. Statistics of the processed Ego4D Subset when mapped
to ImageNet-1K and ImageNet-21K classes [1]. *4,835 images
have multiple distinct ImageNet-21K classes in a single annota-
tion, which when included leads to 419 distinct classes in the Sub-
set. If only the first ImageNet-21K class is included, there are 248
unique classes. Consequently, ImageNet-21K classification was
phrased as an “any of” multilabel classification problem.

have a state change) examples. According to the paper,
there are 19,347 “object of change” annotations, though I
found slightly fewer when parsing the dataset’s accompany
annotations index file. The video prediction tasks for this
benchmark involve: (1) localizing temporally the “point
of no return” for a state change, (2) identifying a state-
changing object before, during, and after its state change,
and (3) classifying if an object change has taken place in a
given frame. Examples of state changes of objects in the
hand are burning, splitting, etc. While I do not attempt the
video prediction tasks, the dataset includes annotated static
image frames in order to identify the object of change. For
each object state change, there is a “Pre” image before the
change, a“PNR” (point of no return) image, and a “Post”
image. I filter for the“Pre” images, because the state change
event could involve the destruction of the object or a signif-
icant change in its appearance.

The filtering of the dataset and mapping the annotated



classes to ImageNet-1K or 21K [1] classes sets required
several types of filtering and processing. Each clip has mul-
tiple frames annotated; each frame has multiple objects an-
notated; and each annotation has multiple words or lemmas
associated with it. Annotations of hands had to be filtered
out. A single Ego4D annotation may contain duplicated
words or lemmas in many cases. A small set of images
also seemed to be annotated twice, and those were removed.
Some images contained multiple ImageNet classes across
different annotations, and therefore those images were fil-
tered out. See Figure 5 for statistics and the Appendix H
for a list of unique ImageNet-1K classes found in the data.

For the ImageNet-21K experiments, there was a
significant issue where over half the images (4,835
out of 8,488) with an ImageNet class actually con-
tain a single annotation which has multiple distinct
ImageNet-21K classes. This is an example annotation:
“cloth(cloth,fabric,garment,kanga,rag)”. The synonyms in
parentheses describe a single annotation but often map to
distinct ImageNet-21K categories. (Note: this is in contrast
to the prior statement above where there are multiple Ima-
geNet classes across separate annotations for the same im-
age.) This seems to a problem related to the breadth of the
classes, which is much larger than ImageNet-1K, and how
the annotation object categories were obtained. It is related
to the known problem, where objects may be labeled incon-
sistently across different examples with some labeled as a
narrower category (e.g. “chair”) and others labeled more
generally (e.g. “furniture”) [15]. In [15], this issue is ad-
dressed by using a semantic tree to relate parent (e.g. “fur-
niture”) and child (e.g. “chair”) categories.

D. Methods
Each of the popular neural classification models intro-

duced above is evaluated zero shot on the new Ego4D Sub-
set. Below is a list with more information on architectures
and network design. All models are built with PyTorch [12]
or wrapped with it and come from one of two open source
repositories: pytorch-image-models [20] or torchvision. I
also created custom pipelines for video data filtering, im-
age data loading, class mapping, zero shot evaluations, and
finetuning. These were based on the two open source repos-
itories above, but each step required significant implemen-
tation and refactoring. For visualization using gradient-
weight class activation maps (GradCAM), I started with an
open source implementation, but ultimately re-implemented
it for my needs.

Image input sizes are transformed to 224x224x3 pixels
unless otherwise indicated. Other transformations vary by
model but are standard for each and used as per the pytorch-
image-models implementation. Most models include the
transformation to normalize by the BatchNorm mean and
standard deviation from the ImageNet dataset for the three

channels. Most models also transform the input through
cropping. Models used were limited to what was available
through the repositories described above in order to limit
the amount of integration code required. Model parameter
sizes are listed alongside the results in Figure 7.

• ResNet50, 101, 152: These are ResNet models with
50, 101, or 152 layers.

• RegNetY 8GF, 32GF: GF refers to GigaFLOPs and is
the number of FLOPS used to train the model. 32GF
is the largest released model. 1

• VisionTransformer (ViT): I evaluate both Base (12
Layers) and Large model (24 Layers) sizes with 16x16
pixel patch size. I use the AugReg [17] models. The
main models released that are usable for zero shot eval-
uation were pretrained on ImageNet 21K and finetuned
on ImageNet 1K.2

• ConvNext: I evaluate both the Base model with num-
ber of channels per stage equal to (128, 256, 512,
1024) and blocks per stage (3, 3, 27, 3) and the Large
model, which has channels (192, 384, 768, 1536) and
blocks (3, 3, 27, 3).

• EfficientNetV2: I evaluate 5 EfficientNetV2 models
of varying size and pretraining: b0, b3, and Small,
Medium, Large. The b0 model is the smallest with
only 5.3M parameters and 224x224 pixel inputs. The
b3 model has 14M parameters and takes 300x300 pixel
inputs. The other three larger models (S/M/L) take
increasingly larger input with Medium and Large at
480x480 pixels.

As noted above, [9] found that ImageNet-A classes were
often misclassified due to their small size versus the back-
ground relative to the class’ average size in the ImageNet
dataset. I cannot repeat their exact experiment which in-
volved cropping the images more closely to the object, but
I do evaluate different ViT models with the same architec-
ture except for increased input size as a proxy. In addition,
where possible, I compared ImageNet-1K trained models
with models of the same architecture that were trained
on ImageNet-21K and finetuned on ImageNet-1K. Not all
model combinations are available.

I also evaluate two models, ConvNext Large and Effi-
cientV2 Large, that were pretrained solely on ImageNet-
21K. I would have liked to evaluate one of the ViT Large’s
that Google released, but they zeroed out the classification
heads for the ImageNet-21K models, which therefore can
only be used for finetuning not zero shot evaluation.

1For other training details and hyperparameters, the interested reader
can look at the original authors’ model zoo.

2See more information about the AugReg released models here.

https://github.com/facebookresearch/pycls/blob/main/MODEL_ZOO.md
https://colab.research.google.com/github/google-research/vision_transformer/blob/master/vit_jax_augreg.ipynb


Versus the 1,000 classes in ImageNet-1K, the 21K
dataset contains many more classes (21,843). As introduced
in the Data section, a single Ego4D annotation, which other
than the main class lemma should contain synonyms for an
object, often had multiple distinct ImageNet- 21K classes.
This was the case in over half the images. Consequently,
in this work I perform ImageNet-21K evaluation as an “any
of” multilabel classification problem: if the model’s top-k
predictions contain any of the labels present from a single
annotation with synonyms, the example is judged as cor-
rect. Multilabel subset accuracy, which would require that
all labels present be correctly predicted, is not used.

Finally, I also finetune the smallest ImageNet-1K mod-
els in each of the five model families to investigate the mod-
els’ ability to learn the egocentric data. While finetuning all
the models would have been most informative, the smallest
models - ResNet50, ConvNext Base, ViT Base, and Effi-
cientNetV2 b0 - were more suitable due to limited compute.
I split the Ego4D Subset roughly in half, with 1,626 images
in training and 1,694 in validation. Many of the static im-
ages come from the same clips, and each video also contains
several clips. To address this problem, I split the data in half
by clip, not by image, for training and validation. Before
doing the splitting this way, I found that there was too much
similarity in the train and validation sets due to the nature
of the Ego4D data: each video involves a single activity and
setting. This allowed the models to erroneously overfit the
training set without penalty on the validation set. For exam-
ple, ConvNext Base achieved 72% Top-1 validation accu-
racy with the former splitting regime but only 12.81% with
the clip splitting strategy.

The models were trained with hyperparameters of: SGD
with Momentum of 0.9; 3 warm-up epochs with warm-up
learning rate 1e-4 and 5e-2 after that; learning rate decay
was 0.1 per epoch. Batch size was 128. Models were trained
on a single V100 or A100 GPU through Google Colab. The
standard transformations were applied per model. The Ima-
geNet BatchNorm mean and standard deviation transforma-
tions were applied to all five. Other transformations were:
0.5 probability of horizontal flip, and color jitter with prob-
ability 0.4 factor. The models were trained for a maximum
of 50 epochs with 5 epochs of validation patience before
terminating.

I evaluate all models on Top-1 and Top-5 accuracy for
both zero shot and finetuning evaluations. Finetuned eval-
uations are reported on the validation set, which was also
used for early stopping during finetuning, but this was un-
avoidable due to the small amount of data in the Ego4d Sub-
set. I also perform quantitative analysis looking at high con-
fidence erroneous predictions and qualitative analysis using
the GradCAM [16] visualizations.

Figure 6. High confidence (p > 0.90) but incorrect predictions
by ResNet50 on zero shot evaluation. Top Left: label was “vac-
uum”, but model predicted “seat belt”, which is also in the image.
Top Right: model predicted oxygen mask but label was “wool”.
It is unclear what exactly that scene is. Bottom left: model pre-
dicted “pot” but label was “vase”. Bottom right: model predicted
“cleaver” but label was “wallet”.

E. Results & Analysis

All models tested perform poorly on this new Ego4D
Subset. The highest zero shot Top-1 accuracy is achieved
by ConvNext Large pretrained on ImageNet-21K with fine-
tuning ImageNet-1K and is only 18.7% (See Figure 11).
For ImageNet-1K pretrained models only, EfficientNetV2
Large achieved the best Top-1 accuracy score at approxi-
mately 17% (See Figure 7). In that setting, EfficientNetV2
did significantly better than the other convolutional mod-
els. In addition, ResNet, RegNetY and ConvNext did not
seem to benefit from increased model size. However, Ef-
ficientNetV2 and ViT did. Pretraining on ImageNet-21K
and finetuning on ImageNet-1K did provide a boost on all
models tested. Using the same model architecture and in-
creasing image input resolution also improves accuracy, at
least for the ViT I was able to test (See Figure 8).

Moreover, models also produced high confidence pre-
dictions that were incorrect when evaluated zero shot.
ResNet50 did that on 3.6% of all examples with a high
threshold of 0.90. See Figure 6 for examples of erroneous
high confidence predictions. Interestingly, one failure mode
still seems to be having multiple objects in the image, in
spite of my aggressive filtering (top left image: “seatbelt”
prediction versus “vacuum” label). Other failure modes are
having a scene that is hard to decipher even for a human (top
right), and slightly different labels (bottom left: prediction
“pot” vs label of “vase”). The bottom right example where
the model predicted “cleaver” and the label was “wallet”



ImageNet 1K-Trained Mod-
els on Ego4d Subset

Top-1 Top-5 Params
(M)

ResNet50 5.42 12.02 25.6M
ResNet101 6.08 14.13 44.5M
ResNet152 6.17 13.77 60.2M
RegNetY 8GF 4.37 10.87 11.2M
RegNetY 32GF [288px] 7.98 17.59 19.4M
ConvNext Base 7.62 16.02 88.6M
ConvNext Large 7.89 17.56 197.8M
ViT B/16 [224px] (Alibaba) 9.28 17.44 86.5M
ViT B/16 [224px] (Google)* 12.41 24.4 86.5M
ViT L/16 [224px] (Google)* 15.87 30.03 304.3M
EfficientNetV2 b0 [224px] 3.95 10.75 7.1M
EfficientNetV2 b3 [300px] 10.31 20.87 14.4M
EfficientNetV2 S [384px] 10.3 20.72 21.5M
EfficientNetV2 M [480px] 11.75 20.81 54.1M
EfficientNetV2 L [480px] 16.96 27.98 118.5M

Figure 7. Zero shot Top-1 and Top-5 accuracy for models trained
on ImageNet 1K. *Google ViTs were trained on ImageNet 21K
and finetuned on ImageNet 1K. All models do poorly on this new
dataset composed from Ego4D. However, larger models do have
the best, albeit low, performance. The best Top-1 score is ≈ 17%.

Vary Models Image Resolu-
tion on Ego4d Subset

Top-1 Top-5 Params
(M)

ViT B/16 [224px] (Google)* 12.41 24.4 86.5M
ViT B/16 [384px] (Google)* 15.45 27.95 86.9M

Figure 8. Larger image input size (224px versus 384px) slightly
improves accuracy for models of otherwise same architecture.

ImageNet-21K Trained Top-1 Top-5 Params
(M)

ConvNext Large [224px] 1.31 5.27 229.8M
EfficientNetV2 L [480px] 2.41 7 145.2M

Figure 9. These two models were trained only on ImageNet 21K,
and the Ego4D Subset annotations were mapped to one of 21,483
classes. Classification was performed as an “any of” problem
due to multiple distinct ImageNet 21K classes present in a sin-
gle Ego4D annotation.

seems to be a genuine misclassification.
Unfortunately, the ImageNet 21K pretraining only model

accuracies are low (See Figure 9). I carefully implemented
the multilabel-like “any of” evaluation method, including
writing tests for the metric, but I think with better map-
ping to ImageNet-21K classes, performance could possibly
be increased. However, this low performance could also
be explained by the combination of factors affecting the
ImageNet-1K evaluations compounded by the multiple dis-
tinct classes within individual Ego4D annotations and the
inconsistent labeling in ImageNet-21K [9].

Pre-
training

ImageNet-1K vs ImageNet-
21K Finetuned 1K

Top-1 Top-5

IN-1K ViT B/16 [224px] (Google)* 9.28 17.44
IN-1K ViT L/16 [224px] (Google)* N/A N/A
IN-1K EfficientNetV2 L [480px] 16.96 27.98
IN-1K ConvNext Large 7.89 17.56
21K-1K ViT B/16 [224px] (Google)* 12.41 24.4
21K-1K ViT L/16 [224px] (Google)* 15.87 30.03
21K-1K EfficientNetV2 L [480px] 18.31 32.53
21K-1K ConvNext Large 18.73 32.68

Figure 10. Top models are pretrained only on ImageNet-1K
whereas bottom models are trained on ImageNet-21K and then
finetuned on ImageNet 1K. You can see modest improvements
across the board. ConvNext Large performance on ImageNet-1K
versus the finetuned version has a larger jump than other models.

Finetuned on Ego4D Subset Top-1 Top-5
Original ResNet50 5.42 12.02
Original RegNetY 8GF 4.37 10.87
Original ConvNext Base 7.62 16.02
Original ViT B/16 [224px] (Alibaba) 9.28 17.44
Original EfficientNetV2 b0 [224px] 3.95 10.75
Finetuned ResNet50 23.79 51.06
Finetuned RegNetY 8GF 35.66 63.28
Finetuned ConvNext Base 12.81 22.73
Finetuned ViT B/16 [224px] (Alibaba) 37.96 62.93
Finetuned EfficientNetV2 b0 [224px] 29.16 56.67

Figure 11. Model performance after finetuning on 1,626 examples
of the Ego4D Subset. The ViT Base performance improves the
most, while the ConvNext Base model seems not to learn as well
from the new data.

The finetuning results demonstrate that most of the mod-
els improve significantly when shown examples of the ego-
centric distribution (See Figure 2). The RegNetY and ViT
both achieve almost 38% Top-1 Accuracy on the held out
validation subset from well under 10% zero shot. How-
ever, overall that performance is still quite low. ConvNext
Base performance is an anomaly and did not increase much.
The ConvNext Large performance also jumped the most in
the ImageNet-1K pretraining versus IN-21K finetuned on
ImageNet-1K. Therefore, it seems possible that the Con-
vNext models either are not implemented properly in pre-
trained versions I used or have unique weaknesses.

F. Conclusion
In this work, I filter egocentric data for static images

with objects common to ImageNet-1K and ImageNet-21K.
I evaluate common neural classification models of varying
sizes from five different model families, both convolutional
and Vision Transformers. Zero shot performance is very



low across models on this new Ego4D Subset. ImageNet-
21K finetuned on ImageNet-1K models perform slightly
better as do models which large size or which take higher
resolution image inputs. However, only finetuning demon-
strates significant gains in accuracy, though the highest Top-
1 accuracy achieved by the ViT Base model of 38% is still
relatively low. This work demonstrates that egocentric data
are adversarial examples for today’s classifiers and degrade
their performance significantly.

This project has its limitations, and there are several op-
portunities for future work. One opportunity is to do bet-
ter image filtering of the original Ego4D data, potentially
by humans. Cropping images with multiple object cate-
gories as in [9] would also allow more images to stay in
the Subset. In addition, it would obviously be great to eval-
uate more models, larger models, and do more finetuning.
Some of the comparisons I was forced to make were imper-
fect: for example, I had no ViT Large model trained only
on ImageNet-1K (versus ImageNet-21K and finetuned on
ImageNet-1K). Data augmentation techniques such as those
evaluated in [7] and [17] would be interesting to explore.
For ImageNet-A, data augmentation did not help perfor-
mance. I would also have liked to do more error analysis
as to why the ImageNet-21K performance is so low.

G. Contributions & Acknowledgements

I completed this project by myself. I had no external col-
laborators, nor did I make use of external compute. I did
use pretrained models and starter code from the repository
pytorch-image-models which has some pretrained classifi-
cation models. I created the custom pipeline to extract the
right video frames from the dataset, process them to match
ImageNet classes, created a custom Pytorch dataloader, cus-
tom evaluation logic both for single label and multilabel
cases, and custom finetuning scripts. I also investigated the
use of Detectron2 to evaluate object detection models, but
that work did not end up in the final paper.

H. Appendix

Below is a list of the 69 ImageNet-1K classes found in
the dataset. They are concentrated in the home or in an in-
dustrial setting given the distributed of data from the camera
wearers. This list could possibly be expanded by revising
the filtering criteria, but many of the images contain multi-
ple objects, which is difficult to overcome.

{’rubber’, ’broom’, ’notebook’, ’speaker’, ’grocery’,
’chainsaw’, ’nail’, ’iron’, ’cardigan’, ’screwdriver’, ’file’,
’envelope’, ’radio’, ’hook’, ’wallet’, ’dough’, ’wool’,
’bucket’, ’pot’, ’apron’, ’dishwasher’, ’mask’, ’bookcase’,
’remote’, ’dustbin’, ’television’, ’strainer’, ’sock’, ’spat-
ula’, ’pole’, ’trolley’, ’packet’, ’scale’, ’sunglass’, ’torch’,
’shovel’, ’mower’, ’screen’, ’plane’, ’switch’, ’vase’, ’cell-

phone’, ’stove’, ’basketball’, ’hammer’, ’mushroom’, ’cup’,
’board’, ’blower’, ’plate’, ’sandal’, ’napkin’, ’mortar’, ’ba-
nana’, ’mouse’, ’refrigerator’, ’dumbbell’, ’mop’, ’jean’,
’pillow’, ’pizza’, ’cucumber’, ’screw’, ’vacuum’, ’tray’,
’paintbrush’, ’snorkel’, ’frypan’}
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