
Egocentric
Data as
Natural
Adversarial
Examples

marywill@stanford.edu

http://stanford.edu

Introduction
• Neural image classification models struggle to

generalize to novel data

• Egocentric video or images from camera-wearers
is becoming more common due to
virtual/augmented reality applications

• I create “Ego4D Subset”: a filtered dataset of
~3,300 static images from Ego4D egocentric
video data

• I evaluate popular ImageNet-trained classifiers
across 5 model families (convolutional and ViTs)
both zero shot and with finetuning

• I find that zero shot performance is very low
(~18% highest Top-1 Accuracy of any model)

• I finetune 5 models on this new data and find
improved, but still low, performance (ViT had
highest Top-1 Accuracy ~ 38%)

Related Work
• Neural Classifiers shown to struggle to

generalize to novel data
• ImageNet-A dataset has ”natural

adversarial examples” that revealed
common failure models in SOTA models
without artificial images or noise
• Further work analyzing low performance

on ImageNet-A: (1) multiple objects, (2)
novel background, (3) small objects
• Other work shows models’ over-reliance

on texture and background and that
they engage in ”shortcut learning”

Reproduced from the ImageNet-A
paper: Top: Categories *in* ImageNet
that are classified wrong but with high
confidence. Bottom: Classes not in
ImageNet that are classified as ImageNet
classes with high confidence.

Problem Statement

• Multiclass image classification: given an image, predict one of
1,000 classes (ImageNet-1K); 21,843 classes (ImageNet-21K)

• Input: Ego4D Subset of static images that I created from Ego4D
Hands & Objects Video Dataset

• Model input images are 224x224x3 unless otherwise stated

• Metrics: Top-1 Accuracy or Top-5 Accuracy*

• Evaluations: Zero Shot and Finetuned on ~50% of my new Ego4D
Subset (Validate on the other ~50% due to limited data)

*I implement ”any of” multilabel classification accuracy for ImageNet-21K evaluations
due to Ego4D annotation ambiguities

Dataset: Ego4D

• Summary
• Egocentric video data (> 3,600 hours of video)
• ~1,000 camera-wearers
• 74 worldwide locations

• 5 benchmark tasks
• Episodic Memory: visual/language queries (e.g.

”where are my keys”)
• Hands & Objects: manipulation of objects in the

hands
• Forecasting: what will happen next?
• A/V Diarization: localize the speaker
• Social: who is talking to whom

• I use static images accompanying the Hands
& Objects benchmark
• Used for main dataset subtask to predict object

states changes (e.g. an object burned, split, etc)

Top Figure reproduced from Ego4D Paper

Dataset

• Egocentric data is different!
• Different perspective, unusual objects, objects are small, many objects in an

image

• Aggressive filtering to create my Subset
• Remove images with multiple objects
• Remove non-ImageNet classes

• My new “Ego4D Subset”
• 3,321 images for ImageNet-1K style pretrained-model evaluation
• 7,398 images for ImageNet-21K style pretrained-model evaluation

• Imprecise Class Mapping
• From Ego4D annotations to ImageNet-1K (e.g. “pot” vs “vase”)

• ImageNet-21K Class Ambiguities
• Had synonyms in a single Ego4D annotation that were distinct ImageNet-21K

classes
• Affected over half the examples (4,835 out of 8,488 images)
• This is NOT: multiple annotations in the same image, which also was common
• Example single annotation: “cloth(cloth,_fabric,_garment,_kanga,_rag)”

Methods

• Class Mapping
• ImageNet-1K style: map Ego4D object labels to 1,000

ImageNet-1K classes

• ImageNet-21K style: map Ego4D object labels to 21,843
ImageNet-21K classes

• Models evaluated
• ResNet 50, 101, 152

• RegNetY 8GF, 32GF

• ViT B/16 and L/16

• ConvNext Base, Large

• EfficientNetV2 b0, b3, S, M, L

• Metrics
• Top-1 & Top-5 Accuracy

• For ImageNet 21-K due to class mapping ambiguities, I
performed “any of’’ multilabel classification

• Finetuning Hyperparameters
• Max 50 epochs (early stopping with 5 epochs

patience)
• SGD with Momentum (0.9)
• Batch size: 128
• Trained on 1 V100 or 1A100
• Standard transformations
• 3 LR warm-up epochs and decay 0.1/epoch

• Finetuning Data
• Split Ego4D Subset in half by clip (not randomly by

images) for training and validation
• No 3rd test set due to limited images
• If split randomly, there are too many similar shared

images across train/val due to limited number of
activities featured in the datasets

• Visualization & Analysis
• GradCAM (Class Activation Mapping) of last layer
• High confidence incorrect predictions above 0.90

Experiments [Zero Shot]

• Low performance
• All models across the board
• Highest EfficientNetV2 L 16.96 Top-1

• Larger model size helps somewhat
• ViTs (Base 12% à Large 15% Top-1)
• EfficientNetV2 (S 10% à L 16% Top-1)

• ResNet & RegNetY do the most poorly
• Models pretrained on ImageNet-21K, then

finetuned on ImageNet-1K do slightly better
than just pretraining on ImageNet-1K

Experiments [Zero Shot]

• Same model architecture but larger
input images helps slightly
• Input resolution: 224px vs 384px

• ViT Base/16: 12% à 15% Top-1

• Evaluated two of the large models
pretrained only on ImageNet-21K
• ImageNet-21K “any of” multilabel

accuracy was very low

Experiments [Finetuning]

• Finetuned small model in each
model family due to compute
limitations

• Finetuning does improve model
performance significantly

• Highest scores are RegNetY 8GF and
ViT B/16 but still low < 40% Top-1

• ConvNext Base is the only model that
does not improve significantly

Error Analysis

• Examined high-confidence incorrect predictions

• ResNet50 puts >0.90 probability where incorrect on 3.6% of
all examples

• Error modes identified (See images at right)
• My Ego4D Subset still has some images with multiple objects (top

left: label: “vacuum”, prediction: seat belt”)
• Egocentric perspective leads to unclear scenes overall (top right)
• Imprecise class mapping (Bottom left: label: “vase”, prediction:

“pot”)
• Genuine errors (Bottom right: label: “wallet”, prediction: “cleaver”)

• Visualizing Errors
• Using gradient-weighted class activation mapping (GradCAM) for

last layer
• Model focuses on the wrong areas (too much focus on background)
• May focus on multiple areas of a single object instead of the whole

object

Conclusions

• I create the Ego4D Subset and evaluate various models both zero shot and after finetuning

• “Ego4D Subset” consists of static images drawn from Ego4D egocentric video dataset
• I evaluate common convolutional and ViT neural classifiers on this data

• Low performance on Ego4D Subset even after Finetuning

• Existing models perform poorly zero shot on egocentric data (both convolutional and Vision Transformers) with top zero shot performance
at ~18% top-1 accuracy

• Larger size models in some families get some benefit

• Small benefit to pretraining on ImageNet-21K first

• Small benefit to input higher image resolution

• Finetuning helps! But, top scores still low 38% highest Top-1 accuracy

• Error modes
• Still having multiple objects in image (even after my annotation-based filtering)

• Semantically similar class mapping differences (Ego4D to ImageNet)

• Strange scenes due to egocentric perspectives (hard even for humans)

• Genuine errors

• Too much focus on background as per GradCAM visualizations

• Overall, this egocentric data is a promising for studying OOD!

• Different distribution than traditional datasets is good for testing generalization capabilities of today’s image neural classifiers

• Today’s models perform relatively poorly on this data

Future Work

• Improve mapping from one image class set (Ego4D) to
another (ImageNet-1K)

• Improving multiple objects filtering (perhaps via cropping)

• Investigate other Ego4D annotations to see if more object
data frames can be pulled

• Investigate object detection instead of classification

• Evaluate more models, bigger size; do more finetuning

• More error analysis on ImageNet-21K scores being low

References

• Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Q. Chavis, Antonino Furnari, Rohit Girdhar, Jack- son Hamburger, Hao
Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh K. Ramakrishnan, F. Ryan, Jayant Sharma,
Michael Wray, Mengmeng Xu, Eric Z. Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie
Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Christian Fuegen, Abrham Gebre- selasie, Cristina
Gonza ́lez, James M. Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Ja ́chym Kola ́r, Satwik Kottur, Anurag Kumar, Federico
Landini, Chao Li, Yang- hao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Mod- hugu, Jonathan Munro, Tullie Murrell, Takumi
Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari, Kiran K. Somasundaram, Audrey Southerland, Yusuke Sugano,
Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo Arbela ́ez, David J. Crandall, Dima Damen, Giovanni Maria
Farinella, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard A. Newcombe, Aude
Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, and
Jitendra Malik. Ego4d: Around the world in 3, 000 hours of egocentric video. ArXiv, abs/2110.07058, 2021.

• Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Xiaodong Song. Natural adversarial examples. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 15257–15266, 2021.

• Robert Geirhos, Jo ̈rn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel, Matthias Bethge, and Felix Wichmann.
Shortcut learning in deep neural networks. ArXiv, abs/2004.07780, 2020.

• Xiao Li, Jianmin Li, Ting Dai, Jie Shi, Jun Zhu, and Xiaolin Hu. Rethinking natural adversarial examples for classifica- tion models. ArXiv,
abs/2102.11731, 2021.

*This is a non-comprehensive list!

Acknowledgements & References

• Entire project done by myself

• Relied on starter code and models from: pytorch-image-
models, torchvision

• Important References

• Thank you to CS231N!

