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Introduction
• Neural image classification models struggle to 

generalize to novel data

• Egocentric video or images from camera-wearers 
is becoming more common due to 
virtual/augmented reality applications

• I create “Ego4D Subset”: a filtered dataset of 
~3,300 static images from Ego4D egocentric 
video data

• I evaluate popular ImageNet-trained classifiers 
across 5 model families (convolutional and ViTs) 
both zero shot and with finetuning 

• I find that zero shot performance is very low 
(~18% highest Top-1 Accuracy of any model)

• I finetune 5 models on this new data and find 
improved, but still low, performance (ViT had 
highest Top-1 Accuracy ~ 38%)



Related Work
• Neural Classifiers shown to struggle to 

generalize to novel data
• ImageNet-A dataset has ”natural 

adversarial examples” that revealed 
common failure models in SOTA models 
without artificial images or noise
• Further work analyzing low performance 

on ImageNet-A: (1) multiple objects, (2) 
novel background, (3) small objects
• Other work shows models’ over-reliance 

on texture and background and that 
they engage in ”shortcut learning”

Reproduced from the ImageNet-A 
paper: Top: Categories *in* ImageNet 
that are classified wrong but with high 
confidence. Bottom: Classes not in 
ImageNet that are classified as ImageNet
classes with high confidence.



Problem Statement

• Multiclass image classification: given an image, predict one of 
1,000 classes (ImageNet-1K); 21,843 classes (ImageNet-21K)

• Input: Ego4D Subset of static images that I created from Ego4D 
Hands & Objects Video Dataset

• Model input images are 224x224x3 unless otherwise stated

• Metrics: Top-1 Accuracy or Top-5 Accuracy*

• Evaluations: Zero Shot and Finetuned on ~50% of my new Ego4D 
Subset (Validate on the other ~50% due to limited data)

*I implement ”any of” multilabel classification accuracy for ImageNet-21K evaluations 
due to Ego4D annotation ambiguities



Dataset: Ego4D

• Summary
• Egocentric video data (> 3,600 hours of video)
• ~1,000 camera-wearers 
• 74 worldwide locations 

• 5 benchmark tasks
• Episodic Memory: visual/language queries (e.g.

”where are my keys”)
• Hands & Objects: manipulation of objects in the 

hands
• Forecasting: what will happen next?
• A/V Diarization: localize the speaker
• Social: who is talking to whom

• I use static images accompanying the Hands 
& Objects benchmark
• Used for main dataset subtask to predict object 

states changes (e.g. an object burned, split, etc)

Top Figure reproduced from Ego4D Paper



Dataset

• Egocentric data is different! 
• Different perspective, unusual objects, objects are small, many objects in an 

image

• Aggressive filtering to create my Subset
• Remove images with multiple objects
• Remove non-ImageNet classes

• My new “Ego4D Subset”
• 3,321 images for ImageNet-1K style pretrained-model evaluation 
• 7,398 images for ImageNet-21K style pretrained-model evaluation

• Imprecise Class Mapping
• From Ego4D annotations to ImageNet-1K (e.g. “pot” vs “vase”)

• ImageNet-21K Class Ambiguities
• Had synonyms in a single Ego4D annotation that were distinct ImageNet-21K 

classes
• Affected over half the examples (4,835 out of 8,488 images) 
• This is NOT: multiple annotations in the same image, which also was common
• Example single annotation: “cloth(cloth,_fabric,_garment,_kanga,_rag)”



Methods

• Class Mapping
• ImageNet-1K style: map Ego4D object labels to 1,000 

ImageNet-1K classes

• ImageNet-21K style: map Ego4D object labels to 21,843 
ImageNet-21K classes

• Models evaluated
• ResNet 50, 101, 152

• RegNetY 8GF, 32GF

• ViT B/16 and L/16

• ConvNext Base, Large

• EfficientNetV2 b0, b3, S, M, L

• Metrics
• Top-1 & Top-5 Accuracy

• For ImageNet 21-K due to class mapping ambiguities, I 
performed “any of’’ multilabel classification

• Finetuning Hyperparameters
• Max 50 epochs (early stopping with 5 epochs 

patience)
• SGD with Momentum (0.9)
• Batch size: 128
• Trained on 1 V100 or 1A100
• Standard transformations
• 3 LR warm-up epochs and decay 0.1/epoch

• Finetuning Data
• Split Ego4D Subset in half by clip (not randomly by 

images) for training and validation
• No 3rd test set due to limited images
• If split randomly, there are too many similar shared 

images across train/val due to limited number of 
activities featured in the datasets

• Visualization & Analysis
• GradCAM (Class Activation Mapping) of last layer
• High confidence incorrect predictions above 0.90



Experiments [Zero Shot]

• Low performance
• All models across the board 
• Highest EfficientNetV2 L 16.96 Top-1

• Larger model size helps somewhat 
• ViTs (Base 12% à Large 15% Top-1) 
• EfficientNetV2 (S 10% à L 16% Top-1)

• ResNet & RegNetY do the most poorly
• Models pretrained on ImageNet-21K, then 

finetuned on ImageNet-1K do slightly better 
than just pretraining on ImageNet-1K



Experiments [Zero Shot]

• Same model architecture but larger 
input images helps slightly
• Input resolution: 224px vs 384px

• ViT Base/16: 12% à 15% Top-1

• Evaluated two of the large models 
pretrained only on ImageNet-21K
• ImageNet-21K “any of” multilabel 

accuracy was very low



Experiments [Finetuning]

• Finetuned small model in each 
model family due to compute 
limitations

• Finetuning does improve model 
performance significantly

• Highest scores are RegNetY 8GF and 
ViT B/16 but still low < 40% Top-1

• ConvNext Base is the only model that 
does not improve significantly



Error Analysis

• Examined high-confidence incorrect predictions

• ResNet50 puts >0.90 probability where incorrect on 3.6% of 
all examples

• Error modes identified (See images at right)
• My Ego4D Subset still has some images with multiple objects (top 

left: label: “vacuum”, prediction: seat belt”)
• Egocentric perspective leads to unclear scenes overall (top right)
• Imprecise class mapping (Bottom left: label: “vase”, prediction: 

“pot”)
• Genuine errors (Bottom right: label: “wallet”, prediction: “cleaver”)

• Visualizing Errors
• Using gradient-weighted class activation mapping (GradCAM) for 

last layer 
• Model focuses on the wrong areas (too much focus on background)
• May focus on multiple areas of a single object instead of the whole 

object



Conclusions

• I create the Ego4D Subset and evaluate various models both zero shot and after finetuning

• “Ego4D Subset” consists of static images drawn from Ego4D egocentric video dataset
• I evaluate common convolutional and ViT neural classifiers on this data 

• Low performance on Ego4D Subset even after Finetuning

• Existing models perform poorly zero shot on egocentric data (both convolutional and Vision Transformers) with top zero shot performance 
at ~18% top-1 accuracy

• Larger size models in some families get some benefit

• Small benefit to pretraining on ImageNet-21K first 

• Small benefit to  input higher image resolution

• Finetuning helps! But, top scores still low 38% highest Top-1 accuracy

• Error modes
• Still having multiple objects in image (even after my annotation-based filtering)

• Semantically similar class mapping differences (Ego4D to ImageNet)

• Strange scenes due to egocentric perspectives (hard even for humans)

• Genuine errors

• Too much focus on background as per GradCAM visualizations

• Overall, this egocentric data is a promising for studying OOD!

• Different distribution than traditional datasets is good for testing generalization capabilities of today’s image neural classifiers

• Today’s models perform relatively poorly on this data



Future Work

• Improve mapping from one image class set (Ego4D) to 
another (ImageNet-1K)

• Improving multiple objects filtering (perhaps via cropping)

• Investigate other Ego4D annotations to see if more object  
data frames can be pulled

• Investigate object detection instead of classification

• Evaluate more models, bigger size; do more finetuning

• More error analysis on ImageNet-21K scores being low
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