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Abstract

The appetite for massive datasets has grown as deep
learning networks have exploded in size. Yet while such
datasets are valued for the robustness they can provide a
model, their size often results in time, resource, and finan-
cial costs that are challenging for researchers and develop-
ers with limited research budget. Moreover, existing strate-
gies to train on subsets of training data only rely on infor-
mation learned within a single training run. However, as
models are typically trained multiple times in practice (i.e.,
for hyperparameter search), we explored heuristics that use
statistics from previous training runs to speed up training
and found that adaptive data selection per training run may
not be required to obtain significant speedup in training an
image classification model. However, when applying sim-
ilar techniques to the object detection task, we found that
simply biasing training towards higher-loss data for object
detection did not offer the same benefit, which suggests that
alternative heuristics may be needed to improve training ef-
ficiency for more complicated computer vision tasks.

1. Introduction

Training better deep neural networks often revolves
around increasing the amount of training data used. But
is all this data really needed for effective learning? Training
on subsets of the training set without degrading the model
performance would reduce the time and cost of training and
potentially allow for better training in resource-constrained
environments such as mobile devices. However, determin-
ing how many and which examples to trim during training
remains a difficult task.

Current approaches to this problem generally rely only
on information learned within the confines of a single train-
ing run to select subsets for training within that run; we
define these as “intra-run” approaches. For example, Jiang
et al. propose SELECTIVE-BACKPROP, which biases train-
ing to spend more time on high-loss, harder examples than
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low-loss, easier ones, and demonstrate that it provides sig-
nificant speedup in converging to a target error rate for im-
age classification [4]. While intra-run approaches have pro-
duced encouraging results in training efficiency, in most
practical settings, training is never done once. For instance,
hyperparameter and model search are important parts of de-
signing effective models, both of which involve multiple
training runs on the same data. A natural question to ask
is whether training statistics from prior training runs can
help train models more effectively and reduce the cost of
training good models. We make two primary contributions
to answer this question for image classification: (1) We at-
tempt to reproduce the training speedups reported by the au-
thors of the adaptive data subset selection algorithm GRAD-
MATCH [6] by evaluating it against a new baseline, and (2)
We define a new algorithm called CACHED-GRAD-MATCH
that takes as input data subsets chosen by GRAD-MATCH in
previous training runs and uses them to train an image clas-
sification model.

While numerous previous works have researched intra-
run methods for image classification, we extended this to
the more challenging computer vision task of object detec-
tion. Object detection classifies multiple object instances
and generates bounding boxes. A key optimization differ-
ence between object detection and image classification is
the object detection objective combines bounding box clas-
sification and localization loss. Our contribution is to eval-
uate if the speedups without performance compromise af-
forded by SELECTIVE-BACKPROP translate to object detec-
tion on the popular MS COCO dataset [ 10], where we have
regression loss in addition to the base classification loss that
SELECTIVE-BACKPROP has been previously tested on.

2. Related Work

Adaptive data subset selection is a technique in which
periodically during training, a new subset of the data is
chosen to train and update the model. The subset selec-
tion is “adaptive” because the chosen subset can update as
the model parameters are updated. GRAD-MATCH is an



adaptive data subset selection algorithm where subsets are
chosen that minimize the difference between the gradient
of the subset and that of the full data [6]. The authors
demonstrate that GRAD-MATCH achieves the best speedup-
accuracy tradeoff (i.e., highest speedup, lowest relative test
error) compared to other state-of-the-art subset selection al-
gorithms (CRAIG [12], GLISTER [7]), random subsets,
and full training with early stopping for image classifica-
tion. They do not explore potential information that can
be incorporated from previous training runs, but rather they
rely solely on gradients computed in previous epochs of a
single run. Toneva et al. showed that in many common
datasets, certain examples were consistently “forgotten”
(i.e., correctly classified earlier in training but misclassified
later on) by a variety of models, and that this could be used
to prune datasets by only including frequently-forgotten ex-
amples [19]. The authors empirically demonstrated that it’s
possible to remove 30% of the CIFAR dataset [9] and still
obtain the same model performance. While this does use
information from past training, it relies exclusively on “for-
getting” events as a metric for identifying unimportant sam-
ples. Since models are often trained multiple times, we aim
to explore whether information from previous runs can im-
prove efficiency of training later runs.

Segmenting training datasets into more-useful and less-
useful data is a common thread of research into more ef-
ficient deep learning. Paul er al. identified a “Data Diet”
that uses individual initial loss gradient norms to identify
data that can be pruned early in training without reduc-
ing accuracy on CIFAR-10 [14]. Shrivastava et al. pro-
posed online hard example mining to improve object de-
tection performance and training efficiency [18]. Jiang et
al.’s SELECTIVE-BACKPROP achieves a speedup of up to
3.5x over standard Stochastic Gradient Descent to a tar-
get error for image classification by using importance sam-
pling to train on high-loss examples [4]. Once enough for-
ward passes have been done such that a batch of appropri-
ate size is created, the loss from these selected examples
is backpropagated. One limitation with implementing this
approach is that excluding training examples for backwards
passes is difficult in PyTorch and TensorFlow, so the paper
had to use a work-around. MosaicML proposes a solution
that adds an extra forward pass for each batch to compute
losses for sampling [20]. After selecting the training exam-
ples, this subset is used for standard forward and backward
passes, thus completing the iteration for this batch. Using
this approach, MosaicML report an improvement in train-
ing time and actually, a slight improvement in validation
accuracy on CIFAR-10.

3. Methods

We discuss two existing intra-run data selection
algorithms, namely GRAD-MATCH and SELECTIVE-

BACKPROP, and propose CACHED-GRAD-MATCH, a new
variant of GRAD-MATCH that utilizes data subset selection
history from previous training runs to inform new training
runs.

3.1. Data Selection

GRAD-MATCH. GRAD-MATCH operates as follows: at
epoch ¢, given a budget of £ examples, an adaptive sub-
set selection algorithm outputs a pair of length-k vectors,
(X, w;), where X; contains the indices of the examples to
train with, and w; contains weights corresponding to the ex-
amples in X;. Then, at epoch ¢, the model is trained only
on the examples in X;, and model updates are applied using
the weighted losses of those examples, with the loss weights
specified by w;. Note that while this formulation allows
subset selection to occur in every epoch, GRAD-MATCH
performs this selection every R epochs and uses the cho-
sen subset and weight for the subsequent R epochs [6].

In our work, we leverage GRAD-MATCH as a baseline
subset selection algorithm. Intuitively, GRAD-MATCH at-
tempts to choose a subset of examples with at most k el-
ements that most closely approximate the loss gradient of
the full training set by minimizing the loss gradient error,
defined below:
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where 6; is the model’s updatable parameters at epoch ¢,
L; is the loss from example ¢, L is the total loss over all
examples, and the norm is the L? norm. To accomplish
this, GRAD-MATCH uses an orthogonal matching pursuit
based algorithm [6]. While GRAD-MATCH provides sig-
nificant training speedups when training with much smaller
datasets, each subset selection run requires non-trivial com-
putation time.

To further improve training time, the GRAD-MATCH au-
thors also considered a warm-start variant, which trains on
the full dataset for Ty epochs before doing data subset se-
lection. This may also be applied to the CACHED-GRAD-
MATCH method described below. We also experimented
with the warm-start variant where Ty = 20.

CACHED-GRAD-MATCH. To explore the idea of in-
forming subset selection by incorporating information from
previous runs, we propose a simple algorithm, CACHED-
GRAD-MATCH, in which (X, w;) pairs are saved from an
initial training run using GRAD-MATCH and replayed in
subsequent training runs. Specifically, if the pair (X;, w;)
was used at epochs [t, £ + R) in the initial training run, sub-
sequent training runs will use (X;, w;) at epochs [t,t + R)
as well. While this is limited to training models on the same



dataset and the same R as the original GRAD-MATCH train-
ing run, this algorithm drastically reduces the computation
time needed for subset selection, further improving train-
ing time over GRAD-MATCH. In Sec. 5, we evaluate its
performance when training models with different hyperpa-
rameters and architectures.

RANDOMPB. To validate previous results from GRAD-
MATCH, we also run baseline training runs with full data
and with random subset selection (in which examples are
randomly chosen without replacement to fill the subset bud-
get) as baselines, as is done in the GRAD-MATCH paper [6].
However, we also evaluate a per-batch variant of random
selection, RANDOMPB, in which the dataset is divided into
fixed batches, and batches (rather than examples) are chosen
at random to fill the budget. A per-batch variant of GRAD-
MATCH, GRAD-MATCHPB, showed improved results over
GRAD-MATCH [6], but a per-batch random subset selection
algorithm was not provided as a baseline.

SELECTIVE-BACKPROP Similar to Stochastic Gradi-
ent Descent, SELECTIVE-BACKPROP traverses the training
batches once per epoch, but it only uses a subset of exam-
ples per batch in the gradient update stage. It uses non-
uniform sampling to ensure that gradients from high-loss
examples are prioritized in model updates. Specifically, the
subset selection algorithm Psee.: (losses) samples s exam-
ples without replacement per training batch of size bg;,.,
where the i*” example is selected with probability LbLaZch .

For our implementation, we use MosaicML’s approach
of using two forward passes (see Sec. 2). Additionally,
they define a interrupt hyperparameter that inserts a
standard training batch every interrupt SELECTIVE-
BACKPROP training batches. SELECTIVE-BACKPROP is
enabled from epoch sb_start to epoch sb_end, and the
model is trained on the full training dataset in the remaining
epochs. This has been found to improve the speed-accuracy
tradeoff [20]. The full algorithm we utilize is summarized
in Algorithm 1.

3.2. Image Classification

Since both Jiang et al. [4] and MosaicML [20] have re-
ported SELECTIVE-BACKPROP speedups for image classi-
fication, we instead focus on applying the GRAD-MATCH,
CACHED-GRAD-MATCH, and RANDOMPB algorithms on
various image classification models and configurations. We
used ResNet [3] and MobileNetV2 [17] as the baseline im-
age classification models.

3.3. Object Detection

The Single Shot MultiBox Detector (SSD) object detec-
tion model proposed by Liu er al. defines 8,732 default

Algorithm 1 SELECTIVE-BACKPROP for Object Detection

1: for epochin range (epochs) do

2 for i, Xy ., inenumerate (data_loader) do
3 if epochin[sb_start, sb_end) then
4: losses = forward(Xy,,.,)

5: ifi % interrupt ==0 then

6 backward(losses)

7 else

8 Xs = Pselect(losses)

9: backward (forward (X,))
10 end if
11: else
12: backward (forward (Xs,,,.))
13: end if
14: end for
15: end for

boxes of different aspect ratios and scales across differ-
ent resolution feature maps output by convolutional layers
stacked on top of a backbone CNN [ 1 1]. To train the model,
N 1 default boxes are matched to each ground truth box
g containing an instance of class ¢”. The loss function for
an example image x with class categories ¢ with predicted
box locations [ for the IV default boxes is as follows:

Lobj(xa c, l7 g) = i(Lconf(ivv C) + aLloc(x7 l7 g)) (2)
N

where L, s is the classification softmax loss for ¢, against
the other classes in ¢, and L;,. is the Smooth L1 [2] re-
gression loss measuring the difference between the default
boxes predicted locations and the ground truth, and « is
a hyperparameter that weighs the two losses. Liu et al.
highlight that SSD is a faster detector than YOLO [15] and
two-stage detectors like Faster R-CNN [16], and the SSD
training procedure utilizes hard negative mining [!1]. We
use this SSD model as a baseline for our object detection
speedup experiments.

To apply SELECTIVE-BACKPROP to object detection,
weuse Liotari = g Ly;,; (the total loss across all ground
truth boxes g for each image ¢) to weigh each training
example and sample across them within a batch of size
bsize: PsetectTLtotal i - - - Ltotal,b.;.. 9. Our implementation
of MosaicML’s recommended approach for SELECTIVE-
BACKPROP is illustrated in Algorithm 1. Training SSD
with this approach will be evaluated against a baseline with-
out SELECTIVE-BACKPROP to evaluate if SELECTIVE-
BACKPROP offers a speedup.

Nvidia provides a PyTorch implementation of Liu et
al. ’s original model, SSD300, which replaces the orig-
inal backbone with ResNet [3] and uses input size of
300x300 [13]. For inference, the Nvidia library integrates
with COCQ’s python library that calculates validation met-
rics given predicted labels and locations. The primary



accuracy measurement is mean average precision, mAP.
For each of the labels in COCO, across all validation im-
ages the area under the Precision-Recall curve is calculated
and then averaged across all labels, yielding a final mAP.
Positive/negative detections are contingent on defining a
intersection-over-union (IoU) threshold. COCO’s primary
evaluation metric is the average of mAP for each of 0.50
to 0.95 with step size 0.05, over all object sizes. We re-
port three additional metrics for mAP [0.50:0.95] for small
(most difficult), medium, and large objects.

Applying GRAD-MATCH and CACHED-GRAD-MATCH
to object detection is more complicated, since SSD doesn’t
have a single linear embedding layer (as opposed to ResNet
for image classification) for prediction. Rather, SSD pre-
dicts class label and bounding box correction for objects of
different sizes, using multiple classifiers corresponding to
feature maps of different resolutions. Therefore, it may be
more effective to concatenate gradients of losses from every
SSD classifier, and run GRAD-MATCH’s orthogonal match-
ing pursuit algorithm to obtain optimal data subsets. Un-
fortunately, due to time constraints, we were unable to inte-
grate SSD with GRAD-MATCH because we ran into techni-
cal issues integrating the gradients from SSD with GRAD-
MATCH.

4. Dataset and Features

For image classification, we used the CIFAR-10 dataset
[9]. To be consistent with the GRAD-MATCH baseline [0],
we normalized the image RGB values across each RGB
channel. While CIFAR-10 is a simple problem, prior work
on data subset selection [19] has demonstrated that up to
30% of data can be removed without affecting the model’s
generalizability, so it make sense as a starting point to eval-
uate data subset selection algorithms.

Object detection was evaluated on MS COCO [10]. Due
to compute constraints, we sampled half of the training and
validation data, for a total of 58.6k training images and
2.5k validation images. We implemented this sampling on
top of MosaicML’s PyTorch DataLoader implementa-
tion, which also provides the performance-improving data
augmentation approaches from the original SSD paper: for
each image, either use the original image, a random patch,
or a patch with a minimum IoU overlap with ground truth
objects [11]. Patches are resized and may be horizontally
flipped.

5. Experiments
To ensure consistency, all experiments were conducted

on an AWS EC2 g4dn.xlarge instance with an Nvidia
Tesla T4 GPU.

5.1. Image Classification

For image classification, we only evaluated GRAD-
MATCH and its variants, since MosaicML already evalu-
ated the effectiveness of SELECTIVE-BACKPROP on im-
age classification (they observed that SelectiveBackprop re-
duced training time by approximately 10%). We first evalu-
ated CACHED-GRAD-MATCH on different hyperparameter
setups by collecting one set of initial (X, w;) pairs from
training ResNet18 on CIFAR10 using GRAD-MATCH as
a backbone, and using that set on training runs where we
varied training hyperparameters. This allowed us to ex-
plore the efficacy of CACHED-GRAD-MATCH in an envi-
ronment mimicking hyperparameter search, where it would
be infeasible to collect multiple training histories. We also
evaluated the efficacy of CACHED-GRAD-MATCH when
transferring across model architectures by collecting ini-
tial (X¢, wy) pairs from training MobileNetV2 [17] on CI-
FAR10 and applying those pairs to train different models on
the same dataset.

For these experiments, we extended code [5] from the
authors of GRAD-MATCH to include CACHED-GRAD-
MATCH and RANDOMPB. Models were trained for 300
epochs each, and for training runs involving data selection,
the subset budget was set to 10% of the training dataset. Un-
less otherwise specified, training was done using an SGD
optimizer, 0.01 learning rate with 0.9 momentum, and co-
sine annealing, and other PyTorch default hyperparameters.
In each training run for CACHED-GRAD-MATCH, we also
performed training runs using the same model, hyperparam-
eters, and dataset using GRAD-MATCH, RANDOMPB, and
full training to serve as baseline comparisons.

5.2. Object Detection

We evaluated three configurations for training SSD with
a ResNet50 backbone: a baseline without SELECTIVE-
BACKPROP, SELECTIVE-BACKPROP with interrupt =
2, and SELECTIVE-BACKPROP with interrupt = 3 (see
Algorithm 1). All other hyperparameters were fixed for
the three configurations; due to compute constraints, we
were not able to run hyperparameter sweeps. We followed
MosaicML'’s recommendations of starting SELECTIVE-
BACKPROP halfway through training (sb_start), ending
it once 90% has completed (sb_end), and keeping half the
examples s = bT in SELECTIVE-BACKPROP iterations
[20]. We evaluate the three configurations on mAP across
different IoU thresholds and total training time. For overall
training, we used the default hyperparameters published by
Nvidia in their SSD repository, namely SGD with momen-
tum, and weight decay on a subset of parameters [13]. The
base learning rate is 2.6e 3, and is warmed up within the
first epoch, and decayed % and % of the way through train-
ing. To fit within our resource limits, we use batch size bg; ¢
of 32 and train for 30 epochs.



6. Results
6.1. Image Classification
For each experiment, we provide the following results:

1. Speedup-accuracy tradeoffs (e.g., Fig. 1): For each
experiment setup, we consider the relative speedup and
relative test errors achieved from training a model us-
ing CACHED-GRAD-MATCH as compared to using the
full dataset. We provide the speedup and test error
at various points in training, each relative to the final
training time and final test error collected from our cor-
responding full training run using the same hyperpa-
rameters. Each curve corresponds to results collected
from one training run, and points along the curve rep-
resent data collected every 20 epochs between epochs
200 and 300.

2. Fixed-accuracy speedups over full training (e.g.,
Tab. 1): For each experiment setup, we also consider
the relative speedup of CACHED-GRAD-MATCH when
compared to the time at which the corresponding full
training baseline surpassed the final CACHED-GRAD-
MATCH test accuracy.

Learning rate variations. We collected (X;,w;) pairs
from GRAD-MATCH training with learning rate 0.01 and
used these to perform CACHED-GRAD-MATCH training
runs with learning rates of 0.001, 0.003, and 0.03, keep-
ing all else fixed. For each learning rate, we also generated
baselines with GRAD-MATCH, RANDOMPB, and full train-
ing. Results are shown in Fig. 1 and Tab. 1.
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Figure 1. Speedup-accuracy tradeoffs of subset selection algo-
rithms using different learning rates.

Optimizer variations. We collected (X, w;) pairs from
GRAD-MATCH training with an SGD optimizer and used
these to perform CACHED-GRAD-MATCH training runs

Speedup
Learning rate 0.001 0.003 0.03
GRAD-MATCH 0.81 0.82 272

CACHED-GRAD-MATCH 1.00 099 7.92

Table 1. Fixed-accuracy speedups over full training using different
learning rates.

Speedup
Adam RMSProp SGD
GRAD-MATCH 0.83 0.81 3.07
CACHED-GRAD-MATCH  0.67 0.97 4.68

Table 2. Fixed-accuracy speedups over full training using different
optimizers.

using Adam and RMSProp optimizers, keeping all else
fixed. For each optimizer, we also generated baselines with
GRAD-MATCH, RANDOMPB, and full training. Results are
shown in Fig. 2 and Tab. 2.
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Figure 2. Speedup-accuracy tradeoffs of subset selection algo-
rithms using different optimizers.

Architecture variations. We collected (X;,w;) pairs
from training MobileNetV2 using GRAD-MATCH and used
these to train ResNet18 and Vision Transformer model [1].
While we saw similar speedup in training the transformer
model, we didn’t have enough data (due to long training
time) so it is excluded from the report.



Speedup on ResNet

GRAD-MATCH 3.86
GRAD-MATCH-warm 4.69
CACHED-GRAD-MATCH 2.24
CACHED-GRAD-MATCH-warm 451

Table 3. Fixed-accuracy speedups over full training for different
model architectures.
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Figure 4. SSD Baseline Training Loss, 30 epochs
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Figure 3. Speedup-accuracy tradeoffs of subset selection algo-
rithms for different model architectures.

6.2. Object Detection

Fig. 4 and Fig. 5 contain plots of SSD training loss for
the baseline and with SELECTIVE-BACKPROP. In Fig. 5,
sb_start occurs at step 27.5k. While the baseline train-
ing loss in Fig. 4 is steady until the learning rate is an-
nealed two-thirds of the way through training, at which
point loss decreases and settles around 3.5, the interval
that SELECTIVE-BACKPROP runs, sb_start - sb_end, is
prominently marked by a noisy, small increase in loss. This
shows the effect of Algorithm 1; since we are intention-
ally biasing towards selecting higher loss training examples
within a batch, it is expected that the loss would go up. It is

Selective Backprop Training Loss
interrupt = 3

25

20

Step

10k 20k 30k 40k 50k

Figure 5. SSD SELECTIVE-BACKPROP Training Loss, 30 epochs

mAP IoU 0.50:0.95 Time

All  Small Med. Large Hours tgryr (s)

Base 9.68 2.65 10.85 1548 7.61 N/A
SB, 9.09 247 971 14.8 7.44 41.07
SBz 879 222  9.53 14.1  N/A! 51.14

Table 4. SSD Evaluation Metrics

also notable that since we are limited to original batch size
of 32 and selecting half, the SELECTIVE-BACKPROP itera-
tions have batch size 16. Smaller batch sizes typically result
in more zigzag training loss behavior, even if we weren’t
trying to select high loss training data. Within Fig. 5, there
is no noticeable difference in the behavior between the two
interrupt values, and once SELECTIVE-BACKPROP is
ended, the loss settles at a higher value than the baseline.

Tab. 4 shows mAP (as defined in Sec. 3.3) and
training time performance. SELECTIVE-BACKPROP with
interrupt = 2 is abbreviated SB,, and likewise for
SB3. In addition to total training time, since over half
the epochs in the SELECTIVE-BACKPROP runs were stan-
dard full-dataset training epochs, we evaluated the differ-
ence between the absolute runtime of epochs with and with-
out SELECTIVE-BACKPROP enabled. Letting ¢; be the run-
time of an epoch, we define ¢4, 7 as the difference between
the average standard epoch time and average SELECTIVE-
BACKPROP-enabled epoch time:

tdiff - ti tj (3)
4 i2[1,epochs] j2[1,epochs]
i2[sb.start,sb.end)  j2[sb_start,sb_end)

Across all object area sizes, SELECTIVE-BACKPROP
scores lower mAP than the baseline. Moreover, we can see
that having more SELECTIVE-BACKPROP iterations within

IThe AWS EC2 instance was stopped and restarted between running
SB3 and the baseline and SB2, so the SB3 absolute training time is not
directly comparable to the other two due to potential GPU environment
differences.



an epoch where it is enabled, which is the case when
interrupt = 3 vs. 2, also reduces mAP. This indicates
that the bf examples discarded on these iterations, espe-
cially when done in successive iterations, costs generaliz-
ability. We had hypothesized that since small object areas
are harder than larger areas, training examples with small
objects would be more likely to be selected by SELECTIVE-
BACKPROP, and so it may even outperform the baseline
for small object mAP, but this is not the case in our ex-
periments. However, there is a clear speed-accuracy trade-
off. Despite the extra forward pass on b% examples re-
quired for each training iteration (line 9 of Algorithm 1),
SELECTIVE-BACKPROP still trains faster. The 4,5y val-
ues show that as the ratio of SELECTIVE-BACKPROP to
standard training runs increases within a training run with
SELECTIVE-BACKPROP enabled, the speedup increases.

7. Discussion
7.1. Image Classification

GRAD-MATCH. In general, GRAD-MATCH provided
significant training speedups over the full training run,
with modest drops in training accuracy. However, GRAD-
MATCH seemed to perform worse in terms of fixed-
accuracy speedups compared to full training when run
with suboptimal hyperparameter choices. Specifically, our
training runs with Adam and RMSProp optimizers showed
worse fixed-accuracy speedups (Tab. 2) compared to full
training, and in these runs we used a learning rate of 0.01,
while the recommended is 0.001 [8]. One possible explana-
tion is that GRAD-MATCH may be be more susceptible to
noisier gradients due to its smaller effective dataset size, and
larger learning rates would amplify these noisy gradients.

CACHED-GRAD-MATCH. CACHED-GRAD-MATCH

also provided significant training speedups, and in many
situations outperformed GRAD-MATCH. This is likely due
to the fact that at selectdion time, CACHED-GRAD-MATCH
only needs to read the previous (X;,w;) from memory
while GRAD-MATCH relies on a more complex com-
putation. The speedup-accuracy tradeoffs often favored
CACHED-GRAD-MATCH over GRAD-MATCH (Figs. 1
and 2), where the frontiers for CACHED-GRAD-MATCH
were more efficient (below and two the right, in the case of
these graphs) than GRAD-MATCH. This is also validated
by the fixed-accuracy speedup results, where CACHED-
GRAD-MATCH mostly outperformed GRAD-MATCH
in different hyperparameter scenarios (Tabs. 1 and 2).
The architecture variations resulted in comparatively
worse performance from CACHED-GRAD-MATCH, which
makes sense as subset selections tailored to one model
architecture’s training may not transfer as well to training
other models; however, we still see reasonable speedups

comparable to GRAD-MATCH in these scenarios (Fig. 3).

RANDOMPB. Surprisingly, RANDOMPB seemed to per-
form comparably to GRAD-MATCH and nearly as well as
CACHED-GRAD-MATCH in our experiments. This also
helps provide intuition behind the strong performance of
CACHED-GRAD-MATCH; if even random subset selection
can provide reasonable speedups, then having some adap-
tively chosen subsets might also be expected to perform
well, even if those subsets were chosen for a different train-
ing scenario.

Warm variants. In general, the warm variants of GRAD-
MATCH and CACHED-GRAD-MATCH performed better
than the base versions, which validates results from pre-
vious work [6], as seen in Fig. 3. This may result from
the fact that a partially tuned model is more likely to have
smaller gradients than a randomly initialized model, leading
to better convergence when adopting smaller training sub-
sets. However, more experimentation would be required to
better understand this phenomenon.

Convergence. To match previous experiments [0], we ran
all training runs for 300 epochs. However, in the cases
of GRAD-MATCH, CACHED-GRAD-MATCH, and RAN-
DOMPB, this was likely not long enough to allow the model
to converge, as training loss was still decreasing when train-
ing stopped. This may be one cause for the relatively poor
fixed-accuracy speedup results. Future work may involve
longer training runs to allow all training runs to converge in
order to provide a more detailed analysis.

Analysis of example choices. To better understand why
CACHED-GRAD-MATCH seemed to transfer well to the
other training scenarios we tested, we qualitatively exam-
ined the which images were given more weight in GRAD-
MATCH training. To do this, we defined the w-score of an
image 7 as the total normalized w for example ¢ summed
across all epochs. We observed that images with large w-
scores seem noticeably different from each other, while im-
ages with low w-scores seem more similar to each other
(Figs. 7 and 8 in Appendix A.1). This matches our in-
tuition, since training the model on more varied examples
should improve the model’s test accuracy more than train-
ing on very similar examples, and this should generally hold
regardless of the specific architecture and hyperparameter
choices.

To further illustrate this, Fig. 6 shows the histogram of
w-scores across training examples, which shows that high
w-scores are concentrated on a small number of examples.
We also examine the cosine similarity between weights se-
lected by GRAD-MATCH when run on different model ar-



chitectures in Tab. 5. We can see that there is a notice-
able overlap between the selected subsets despite noticeable
changes in hyperparameters or model architectures, sug-
gesting that some examples may be important regardless of
the training scenario. This is consistent with previous find-
ings [19,21], which conjecture that neural network bound-
aries are defined by a small subset of examples.

30000 -

Number of examples

o
0.000 0.216 0.433 0649 0865 1081 1.298 1514 1730
w-score

Figure 6. w-score histogram for GradMatch training on ResNet18

Adam, RMSProp, | RMSProp,
ResNet ResNet MobileNet
Adam, - 0.745 0.695
ResNet
RMSProp, | — — 0.687
ResNet
RMSProp, | - - -
MobileNet

Table 5. Cosine similarities of W-scores for different models

7.2. Object Detection

While we do observe a speedup from applying
SELECTIVE-BACKPROP to object detection, since our ex-
periment results show a non-trivial degradation in accuracy,
we don’t achieve the same benefits as Jiang et al. and Mo-
saicML [20] do for image classification. In Appendix A.2,
we highlight the stark effect that SELECTIVE-BACKPROP
had on the weight distribution of a layer in the ResNet50
backbone of SSD. From this, we can see that Algorithm 1
has the intended effect of forcing re-weighting of param-
eters in accordance with trying to learn high-loss training
data, but we do not observe the faster convergence to an op-
timal error that Jiang et al. do. With additional compute
resources, we would run training for at least double the
epochs, and with bigger batch sizes to potentially reduce
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Figure 7. Images with low W-scores

the noise in the loss curves. We would also build a more
complete picture of the speed-accuracy trade-off curve by
running hyperparameter sweeps over sb_start, sb_end,
and interrupt. For the high-loss examples, investigat-
ing the distribution of the loss between box classification
and box regression could help identify if we perhaps need
to have separate o (Eq. (2)) values when running each of the
forward passes in Algorithm 1. Another direction we would
pursue as future research is to try to adapt GRAD-MATCH
to run on the SSD model, which would require us to care-
fully design how to integrate gradients across layers, since
SSD has classification and regression heads.

8. Conclusion

We thoroughly investigated the effectiveness of GRAD-
MATCH as an adaptive subset selection framework. While
GRAD-MATCH may significantly speed up training, it also
has the potential drawback where the model accuracy and
convergence rate is more dependent on the model optimizer.
We also proposed and evaluated a novel data selection ap-
proach which reuses prior training, and showed that signif-
icant performance gains may be obtained without incurring
the extra cost of adaptive data selection. Additionally, we
explored whether existing data selection strategy can effec-
tively handle more challenging problems like object detec-
tion. We see that the benefit of data selection is noticeably
less pronounced for object detection.

A. Appendix

A.1. Images selected by GRAD-MATCH

For our analysis we qualitatively compared 10 training
examples, though we only show a small subset in this report
(shown in Fig. 7 and Fig. 8).



Figure 8. Images with high w-scores

A.2. SELECTIVE-BACKPROP Parameter Visualization

Using the gradient and parameter logging provided by
Weights & Biases, we were able to take a deeper look into
how biasing towards high-loss training examples and dis-
carding the others within a batch impacts learning. Fig. 9
and Fig. 10 present a stark difference between the base-
line and SELECTIVE-BACKPROP (interrupt is 2) for
one of the layers in the ResNet50 backbone in the SSD
model. SELECTIVE-BACKPROP is enabled at step 27.5k
and disabled at step 49.5k. The weights in the baseline
in Fig. 9 generally become more concentrated around 0.22
as training progresses, evidenced by the dark blue near the
end of training. In Fig. 10 though, the parameters grad-
ually coalescing around 0.22 is wholly interrupted when
SELECTIVE-BACKPROP is enabled. The weights end up
much more distributed across the range [0.1, 0.4]. The new
distribution of weights could be interpreted positively as an
effort towards learning the harder examples in the dataset,
or negatively as indicative that the larger magnitude gradi-
ents generated from backpropagating larger losses disturbed
the model from convergence. Although Tab. 4 shows that
the end result of SELECTIVE-BACKPROP is a small degra-
dation in performance, it has a clear effect in the training
process that can serve as a launching point for future exper-
iments.
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Figure 9. SSD Baseline: Parameter weights for a layer in the
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Figure 10. SSD SELECTIVE-BACKPROP: Parameter weights for a
layer in the ResNet50 backbone
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