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Motivation: Increasingly Expensive Model Training

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)
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Image Credit: Amodei, Dario, and Danny Hernandez. “Al and Compute.” OpenAl, OpenAl, 16 May 2018, https://openai.com/blog/ai-and-compute/. Stanford University




Previous Approaches

o Grad-Match: Periodically choose subsets of training data to train on
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o Selective-Backprop: Only perform backpropagation on high-loss examples
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preprint arXiv:1910.00762.
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Our Contributions

o Key observation: Most often, model training occurs multiple times, for
example for hyperparameter and model search

o Can we use training statistics from prior training runs to help train
models on the same dataset more efficiently with minimal loss in
performance?
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Our Contributions

o For the image classification task:

o Reproduce the training speedups reported by Grad-Match on the
standard CIFAR-10 dataset, evaluate it against a new random
selection baseline, and propose and evaluate a variant that reuses
subsets chosen from previous training runs.

o For the object detection task:
o Evaluate if the benefits of Selective-Backprop translate to object
detection on the popular MS COCO dataset
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Image Classification - Methods

o Reproduce the training speedups reported by Grad-Match on the
standard CIFAR-10 dataset, evaluate it against a new random
selection baseline, and propose and evaluate a variant that reuses

subsets chosen from previous training runs.
o Random subset selection: choose random examples to fill budget

o RandomPB: divide train set into fixed batches, then randomly
choose batches
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Image Classification - Methods

o Reproduce the training speedups reported by Grad-Match on the
standard CIFAR-10 dataset, evaluate it against a new random selection
baseline, and propose and evaluate a variant that reuses subsets
chosen from previous training runs.

o Cached-Grad-Match: run an initial training run with Grad-Match,
and on subsequent runs “replay” the same subsets selected
m Saves computation time, but how robust is it?
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Image Classification - Experiments

e Cached-Grad-Match
o Reuse Grad-Match'’s data selection on ResNet training for different
learning rates
o Reuse Grad-Match'’s data selection on ResNet training for
optimizers
o Reuse Grad-Match’s data selection on MobileNetV2 training for
ResNet training
e Baseline
o RandomPB
o Training on full dataset
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Image Classification - Fixed Accuracy Speedup

Speedup
Learning rate 0.001 0.003 0.03
GRAD-MATCH 0.81 0.82 272
CACHED-GRAD-MATCH 1.00 099 7.92

Table 1. Fixed-accuracy speedups over full training using different
learning rates.

Speedup
Adam RMSProp SGD
GRAD-MATCH 0.83 0.81 3.07
CACHED-GRAD-MATCH 0.67 0.97 4.68

Table 2. Fixed-accuracy speedups over full training using different
optimizers.

Speedup on ResNet
GRAD-MATCH 3.86
GRAD-MATCH-warm 4.69
CACHED-GRAD-MATCH 2.24
CACHED-GRAD-MATCH-warm 4.51

Table 3. Fixed-accuracy speedups over full training for different
model architectures.
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Image Classification - Training Speed vs Error
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Image Classification - Results
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Object Detection - Methods

e Single Shot Multibox Detector (SSD)
o ResNet backbone + conv layers + classification, regression heads
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e Loss Function

1
Lo (@,1,9) = 37 (Eeons (@,6) + aLic(, 1, )

Image Credit: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, f d . .
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015. Stanfor UIllVeI'Slty




Object Detection - Methods

o Selective-Backprop
o Combine Jiang et al. original
approach with MosaicML
suggestions

e Nvidia SSD PyTorch library:
ResNet backbone, input size
300x300

o Integrates with COCO'’s
Python library

Algorithm 1 SELECTIVE-BACKPROP for Object Detection

I: for epoch in range (epochs) do

2: for i, X; . inenumerate (data_-loader) do
3: if epochin [sb_start, sb_end) then
4: losses = forward(Xy,,..)

5: ifi $ interrupt ==0 then

6: backward(losses)

7 else

8: Xs = Pyelect(losses)

9: backward (forward (X;))
10: end if

11: else

12: backward (forward (Xs,,..))
13: end if

14: end for

15: end for
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Object Detection - Methods

o Evaluation Metrics

o Total Training Time

o Mean average precision: mAP [0.50:0.95]
m All object sizes
m Small
m Medium
|

- .

e Intersection over Union (loU):
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Object Detection - Experiments

1. Baseline: No Selective-Backprop
2. Selective-Backprop, interrupt = 2
3. Selective-Backprop, interrupt = 3

e Common parameters:
o Batch size = 32
o Epochs =30

o Selective-Backprop (variables defined in Alg. 1)
o Start (sb_start) = 0.5
o End(sb_end)=0.9
o Keep(s)=0.5
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Object Detection - Results
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1The AWS EC2 instance was stopped and restarted between running SB3 and the baseline and SB2, so the SB3 absolute training time is not directly comparable to the other two

due to potential GPU environment differences. Stanford University



Object Detection - Discussion

e Speedup, but accuracy lost

e Alg. 1 has a visible effect on model parameters in one layer of the
ResNet50 backbone:
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Future Work

o Image Classification
o Convergence analysis
o Other data selection heuristics

e Object Detection
o Multiple re-runs, Hyperparameter sweeps
o Larger batch size
o Grad-Match and Cached-Grad-Match
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Conclusion

Found Grad-Match speedup for image classification, but its
performance varies substantially with different hyperparameters

Reusing prior training (Cached-Grad-Match) shows performance gains
without extra cost of adaptive data selection

Benefit of data selection is less pronounced for object detection

Stanford University



References

Amodei, Dario, and Danny Hernandez. “Al and Compute.” OpenAl, OpenAl, 16 May 2018, https://openai.com/blog/ai-and-compute/.

Jiang, A. H., Wong, D. L. K., Zhou, G., Andersen, D. G., Dean, J., Ganger, G. R,, ... & Pillai, P. (2019). Accelerating deep learning by
focusing on the biggest losers. arXiv preprint arXiv:1910.00762.

Krishnateja Killamsetty, Dheeraj Bhat, Ganesh Ramakrishnan, and Rishabh lyer. CORDS: COResets and Data Subset selection for
Efficient Learning, 3 2022.

Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., & lyer, R. (2021, July). Grad-match: Gradient matching based data subset selection
for efficient deep model training. In International Conference on Machine Learning (pp. 5464-5474). PMLR.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015.

Nvidia. SSD300 v1.1 For PyTorch, 3 2019.

Abhinav Venigalla. MosaicML: Selective Backprop, 2021.

Stanford University



