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Imaging flow cytometry (IFC) is a promising imaging modality for research and

diagnostics
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Most computational methods for analysis of imaging data have been developed
for tissue slides or cell plates
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Few computational methods for IFC have been developed, but deep learning

methods have previously been used
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« Train the classifier for a set of cells with known
classes: find important features

» Test the classifier (score) for a different set of
cells with known classes; evaluate the
predictive power of the trained classifier
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In this work, | explored how effective compact models are for extracting
meaningful features from bright-field IFC images for a multiclass classification task
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Stage Data Split

Training Validation Test
G1/S/G2 22084 3078 6388
Prophase 414 65 127
Metaphase 45 4 19
Anaphase 10 0 5
Telophase 17 2 8

Inputs: 3x64x64 BF Images of Jurkat Cells
Outputs: 5 class probabilities

Metrics: Accuracy, Balanced Accuracy



| used 3 different deep-learning architectures including a fully-connected network,

a convolutional neural network, and a vision transformer
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Models generally converged quickly, with training taking less than 30 minutes with
early stopping and without exhibiting overfitting
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Surprisingly, the 2-layer FC network showed the best performance, while the

3-layer CNN had the broadest prediction quality
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Both the FC network and the CNN were able to segment cells to differing
degrees, aiding them in making classification decisions
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Saliency maps also revealed how the networks leveraged cell size in their
predictions
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A UMAP embedding of the final layer of the CNN showed separation of cells
based on their class
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Conclusions

Deep learning can be used for feature extraction from BF images acquired by an IFC
e Simple models can achieve close to state-of-the-art performance in this task
e The vision transformer architecture from Simple ViT was not able to make meaningful

progress in this task



Future Directions

Collect more images to ameliorate the stark class imbalance

Explore more data augmentation

Leverage more compute to explore deeper models, particularly for transformer

Use a transfer learning approach with other IFC datasets or pretrained models (e.g.
ResNet)



